Skip to main content

A Practical Guide to Structure-Based Prediction of MHC-Binding Peptides

  • Protocol
Immunoinformatics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 409))

Summary

The binding of bound peptide ligands to major histocompatibility complex (MHC) molecules plays a key role in the activation of normal immune responses and is an intricate theoretical problem that remains unsolved. Geometric and energetic complementarities between an MHC molecule and its corresponding bound peptide ligand are critical in determining the stability of the complex. In this context, the introduction of structural information can greatly facilitate our understanding of how well a peptide ligand can associate with a particular MHC molecule. This chapter introduces the use of structural models as a predictive method to determine whether a peptide sequence can bind to a specific MHC allele

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chenna, R., Sugawara, H., Koike, T., Lopez, R., Gibson, T. J., Higgins, D. G. and Thompson, J. D. (2003) Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res. 31, 3497–3500.

    Article  CAS  PubMed  Google Scholar 

  2. Clamp, M., Cuff, J., Searle, S. M. and Barton, G. J. (2004) The Jalview Java alignment editor. Bioinformatics 12, 426–427.

    Article  Google Scholar 

  3. Sali, A. and Blundell, T. L. (1993) Comparative protein modeling by satisfaction of spatial restraints. J. Mol. Biol. 234, 774–815.

    Article  Google Scholar 

  4. Abagyan R. and Totrov M. (1999) Ab initio folding of peptides by the optimal-bias Monte Carlo Minimization Procedure. J. Comput. Phys. 151, 402–421.

    Article  CAS  Google Scholar 

  5. Schwede, T., Kopp, J., Guex, N. and Peitsch, M. C. (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res. 31, 3381–3385.

    Article  CAS  PubMed  Google Scholar 

  6. Bates, P. A., Kelley, L. A., MacCallum, R. M. and Sternberg, M. J. E. (2001) Enhancement of protein modelling by human intervention in applying the automatic programs 3D-JIGSAW and 3D-PSSM. Proteins Suppl. 5, 39–46.

    Article  PubMed  Google Scholar 

  7. Vriend, G. (1990) WHAT IF: a molecular modeling and drug design program. J. Mol. Graph. 8, 52–56.

    Article  CAS  PubMed  Google Scholar 

  8. Laskowski, R. A., MacArthur, M. W., Moss, D. S. and Thornton, J. M. (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Cryst. 26, 283–291.

    Article  CAS  Google Scholar 

  9. Colovos, C. and Yeates, T. O. (1993) Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci. 2, 1511–1519.

    Article  CAS  PubMed  Google Scholar 

  10. Sippl, M. J. (1993) Recognition of errors in three-dimensional structures of proteins. Proteins 17, 355–362.

    Article  CAS  PubMed  Google Scholar 

  11. Smith, T. F. and Waterman, M. S. (1981) Identification of common molecular subsequences. J. Mol. Biol. 147, 195–197.

    Article  CAS  PubMed  Google Scholar 

  12. Needleman, S. B. and Wunsch, C. D. (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48, 443–453.

    Article  CAS  PubMed  Google Scholar 

  13. Read, J., Braye, G., Jurek, L. and James M. N. G. (1984) Critical evaluation of comparative model building of Streptomyces griseus trypsin. Biochemistry 23, 6570–6575.

    Article  CAS  PubMed  Google Scholar 

  14. Tong, J. C., Tan, T. W. and Ranganathan, S. (2004) Modeling the structure of bound peptide ligands to major histocompatibility complex. Protein Sci. 13, 2523–2532.

    Article  CAS  PubMed  Google Scholar 

  15. Fernández-Recio, J., Totrov, M. and Abagyan, R. (2002) Soft protein-protein docking in internal coordinates. Protein Sci. 11, 280–291.

    Article  PubMed  Google Scholar 

  16. Ranganathan, S. (2001) Molecular Modeling on the web. Biotechniques, 30, 50–52.

    CAS  PubMed  Google Scholar 

  17. Ranganathan, S. (2003) Molecular Modeling on the web, Biocomputing: Computer Tools for Biologists, ed. Stuart M. Brown, Biotechniques press, Eaton Publishing, Westborough, USA, Chap. 49, pp. 411–417.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Ranganathan, S., Tong, J.C. (2007). A Practical Guide to Structure-Based Prediction of MHC-Binding Peptides. In: Flower, D.R. (eds) Immunoinformatics. Methods in Molecular Biology™, vol 409. Humana Press. https://doi.org/10.1007/978-1-60327-118-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-118-9_22

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-699-3

  • Online ISBN: 978-1-60327-118-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics