Skip to main content

Phospholipid-Interacting Proteins by Solution-State NMR Spectroscopy

  • Protocol
  • First Online:
Book cover Lipid Signaling Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 462))

Abstract

Signaling lipids are found in specific subcellular membranes, where they recruit and regulate cytosolic proteins and contribute to bilayer structure and dynamics. These interactions are vital for signaling and membrane trafficking pathways and contribute to the organization, growth, and differentiation of the cell. However, the analysis of the physical and chemical mechanisms of membrane interaction and lipid recognition is technically challenging, motivating the development of new NMR methods to study lipid and bilayer binding by peripheral membrane proteins in solution. We describe methods that have been optimized for the FYVE and phox (PX) domains of the EEA1 and Vam7p proteins, respectively, both of which specifically recognize phosphatidylinositol 3-phosphate (PtdIns3P) within endocytic membranes. Solution-state NMR methods were used to characterize the phosphoinositide and membrane interaction sites and affinities and can be used to illustrate protein:micelle structures and phospholipid specificities. The methods are generally applicable and can be used to discover and characterize the phospholipid interactions of other membrane-interacting protein domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DHPC::

dihexanoyl- or diheptanoyl-phosphatidylcholine;

DPC::

dodecylphosphocholine;

GST::

glutathione S-transferase;

HSQC::

heteronuclear single quantum coherence;

PC::

phosphatidylcholine;

PI::

phosphatidyl inositol;

TCEP::

tris (2-carboxyethyl) phosphine.

References

  1. Lee SA, Eyeson R, Cheever ML, Geng JM, Verkhusha VV, Burd C, Overduin M, Kutateladze TG. Targeting of the FYVE domain to endosomal membranes is regulated by a histidine switch. Proc Natl Acad Sci USA 2005;102:13052–7.

    Google Scholar 

  2. Cheever ML, Sato TK, de Beer T, Kutateladze TG, Emr SD, Overduin M. Phox domain interaction with PtdIns(3)P targets the Vam7 t-SNARE to vacuole membranes. Nat Cell Biol 2001;3:613–8.

    Article  PubMed  CAS  Google Scholar 

  3. Ford MG, Pearse BM, Higgins MK, Vallis Y, Owen DJ, Gibson A, Hopkins CR, Evans PR, McMahon HT. Simultaneous binding of PtdIns(4,5)P 2 and clathrin by AP180 in the nucleation of clathrin lattices on membranes. Science 2001;291:1051–5.

    Article  PubMed  CAS  Google Scholar 

  4. Overduin M, Cheever ML, Kutateladze TG. Signalling with phosphoinositides: Better than binary. Mol Interv 2001;1:150–9.

    PubMed  CAS  Google Scholar 

  5. Lee E, Marcucci M, Daniell L, Pypaert M, Weisz OA, Ochoa GC, Farsad K, Wenk MR, De Camilli P. Amphiphysin 2 (Bin1) and T-tubule biogenesis in muscle. Science 2002;297:1193–6.

    Article  PubMed  CAS  Google Scholar 

  6. Johnson JE, Giorgione J, Newton AC. The C1 and C2 domains of protein kinase C are independent membrane targeting modules, with specificity for phosphatidylserine conferred by the C1 domain. Biochemistry 2000;39:11360–9.

    Article  PubMed  CAS  Google Scholar 

  7. Mikoshiba K, Fukuda M, Ibata K, Kabayama H, Mizutani A. Role of synaptotagmin, a Ca2+ and inositol polyphosphate binding protein, in neurotransmitter release and neurite outgrowth. Chem Phys Lipids 1999;98:59–67.

    Article  PubMed  CAS  Google Scholar 

  8. Stolt PC, Jeon H, Song HK, Herz J, Eck MJ, Blacklow SC. Origins of peptide selectivity and phosphoinositide binding revealed by structures of disabled-1 PTB domain complexes. Structure 2003;11:569–79.

    Article  PubMed  CAS  Google Scholar 

  9. Iyer LM, Koonin EV, Aravind L. Adaptations of the helix-grip fold for ligand binding and catalysis in the START domain superfamily. Proteins 2001;43:134–44.

    Article  PubMed  CAS  Google Scholar 

  10. Zwaal RF, Comfurius P, Bevers EM. Lipid-protein interactions in blood coagulation. Biochim Biophys Acta 1998;1376:433–53.

    Article  PubMed  CAS  Google Scholar 

  11. Tokonzaba E, Capelluto DG, Kutateladze TG, Overduin M. Phosphoinositide, phosphopeptide and pyridone interactions of the Abl SH2 domain. Chem Biol Drug Des 2006;67:230–7.

    Article  PubMed  CAS  Google Scholar 

  12. Boggon TJ, Shan WS, Santagata S, Myers SC, Shapiro L. Implication of tubby proteins as transcription factors by structure-based functional analysis. Science 1999;286:2119–25.

    Article  PubMed  CAS  Google Scholar 

  13. Harlan JE, Hajduk PJ, Yoon HS, Fesik SW. Pleckstrin homology domains bind to phosphatidylinositol-4,5-bisphosphate. Nature 1994;371:168–70.

    Article  PubMed  CAS  Google Scholar 

  14. Peter BJ, Kent HM, Mills IG, Vallis Y, Butler PJ, Evans PR, McMahon HT. BAR domains as sensors of membrane curvature: The amphiphysin BAR structure. Science 2004;303:495–9.

    Article  PubMed  CAS  Google Scholar 

  15. Niggli V, Andreoli C, Roy C, Mangeat P. Identification of a phosphatidylinositol-4,5-bisphosphate-binding domain in the N-terminal region of ezrin. FEBS Lett 1995;376:172–6.

    Article  PubMed  CAS  Google Scholar 

  16. Zimmermann P, Meerschaert K, Reekmans G, Leenaerts I, Small JV, Vandekerckhove J, David G, Gettemans J. PIP(2)-PDZ domain binding controls the association of syntenin with the plasma membrane. Mol Cell 2002;9:1215–25.

    Article  PubMed  CAS  Google Scholar 

  17. Prilusky J, Felder CE, Zeev-Ben-Mordehai T, Rydberg EH, Man O, Beckmann JS, Silman I, Sussman JL. FoldIndex: A simple tool to predict whether a given protein sequence is intrinsically unfolded. Bioinformatics 2005;21:3435–38.

    Article  PubMed  CAS  Google Scholar 

  18. Yang ZR, Thomson R, McNeil P, Esnouf RM. RONN: The bio-basis function neural network technique applied to the detection of natively disordered regions in proteins. Bioinformatics 2005;21:3369–76.

    Article  PubMed  CAS  Google Scholar 

  19. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res 1997;25:3389–402.

    Article  PubMed  CAS  Google Scholar 

  20. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994;22:4673–80.

    Article  PubMed  CAS  Google Scholar 

  21. Lepre CA, Moore JM. Microdrop screening: A rapid method to optimize solvent conditions for NMR spectroscopy of proteins. J Biomol NMR 1998;12:493–9.

    Article  PubMed  CAS  Google Scholar 

  22. Armstrong N, de Lencastre A, Gouaux E. A new protein folding screen: Application to the ligand binding domains of a glutamate and kainate receptor and to lysozyme and carbonic anhydrase. Protein Sci 1999;8:1475–83.

    Article  PubMed  CAS  Google Scholar 

  23. Sheehan D, O'Sullivan S. Fast protein liquid chromatography. Methods Mol Biol 2004;244:253–8.

    PubMed  CAS  Google Scholar 

  24. Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A. ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 2003;31:3784–8.

    Article  PubMed  CAS  Google Scholar 

  25. Cheever ML, Kutateladze TG, Overduin M. Increased mobility in the membrane targeting PX domain induced by phosphatidylinositol 3-phosphate. Protein Sci 2006;15:1873–82.

    Article  PubMed  CAS  Google Scholar 

  26. Vuillard L, Braun-Breton C, Rabilloud T. Non-detergent sulphobetaines: A new class of mild solubilization agents for protein purification. Biochem J 1995;305(Pt 1):337–43.

    PubMed  CAS  Google Scholar 

  27. Golovanov AP, Hautbergue GM, Wilson SA, Lian LY. A simple method for improving protein solubility and long-term stability. J Am Chem Soc 2004;126:8933–9.

    Article  PubMed  CAS  Google Scholar 

  28. Amezcua CA, Harper SM, Rutter J, Gardner KH. Structure and interactions of PAS kinase N-terminal PAS domain: Model for intramolecular kinase regulation. Structure 2002;10:1349–61.

    Article  PubMed  CAS  Google Scholar 

  29. Kay LE. Pulsed field gradient multi-dimensional NMR methods for the study of protein structure and dynamics in solution. Prog Biophys Mol Biol 1995;63:277–99.

    Article  PubMed  CAS  Google Scholar 

  30. Vinogradova O, Sonnichsen F, Sanders CR. On choosing a detergent for solution NMR studies of membrane proteins. J Biomol NMR 1998;11:381–6.

    Article  PubMed  CAS  Google Scholar 

  31. le Maire M, Champeil P, Moller JV. Interaction of membrane proteins and lipids with solubilizing detergents. Biochim Biophys Acta 2000;1508:86–111.

    Article  PubMed  Google Scholar 

  32. Altieri AS, Hinton DP, Byrd RA. Association of biomolecular systems via pulsed field gradient NMR self-diffusion measurements. J Am Chem Soc 1995;117:7566–7.

    Article  CAS  Google Scholar 

  33. Kutateladze TG, Capelluto DG, Ferguson CG, Cheever ML, Kutateladze AG, Prestwich GD, Overduin M. Multivalent mechanism of membrane insertion by the FYVE domain. J Biol Chem 2004;279:3050–7.

    Article  PubMed  CAS  Google Scholar 

  34. Goetz H, Kuschel M, Wulff T, Sauber C, Miller C, Fisher S, Woodward C. Comparison of selected analytical techniques for protein sizing, quantitation and molecular weight determination. J Biochem Biophys Methods 2004;60:281–93.

    Article  PubMed  CAS  Google Scholar 

  35. Lebowitz J, Lewis MS, Schuck P. Modern analytical ultracentrifugation in protein science: A tutorial review. Protein Sci 2002;11:2067–79.

    Article  PubMed  CAS  Google Scholar 

  36. Wilson WW. Light scattering as a diagnostic for protein crystal growth—A practical approach. J Struct Biol 2003;142:56–65.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Overduin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kami, K., Rajesh, S., Overduin, M. (2009). Phospholipid-Interacting Proteins by Solution-State NMR Spectroscopy. In: Larijani, B., Woscholski, R., Rosser, C. (eds) Lipid Signaling Protocols. Methods in Molecular Biology, vol 462. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-115-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-115-8_20

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-58829-727-3

  • Online ISBN: 978-1-60327-115-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics