Skip to main content

Rapid Prototyping of Microstructures by Soft Lithography for Biotechnology

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 583))

Abstract

This chapter describes the methods and specific procedures used to fabricate microstructures by soft lithography. These techniques are useful for the prototyping of devices useful for applications in biotechnology. Fabrication by soft lithography does not require specialized or expensive equipment; the materials and facilities necessary are found commonly in biological and chemical laboratories in both academia and industry. The combination of the fact that the materials are low-cost and that the time from design to prototype device can be short (< 24 h) makes it possible to use and to screen rapidly devices that also can be disposable. Here we describe the procedures for fabricating microstructures with lateral dimensions as small as 1 μm. These types of microstructures are useful for microfluidic devices, cell-based assays, and bioengineered surfaces.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Whitesides, G. M., Ostuni, E. S., Takayama, S., Jiang, X., and Ingber, D. E. (2001) Soft Lithography in Biology and Biochemistry. Annu. Rev. Biomed. Eng. 3, 335–373.

    Article  CAS  Google Scholar 

  2. Henkel, G. W. (2002) Live cell assays: tools for functional genomics. Funct. Genomics Ser. 1, 279–311.

    CAS  Google Scholar 

  3. Bhadriraju, K., and Chen, C. S. (2002) Engineering cellular microenvironments to improve cell-based drug testing. Drug Discov. Today 7, 612–620.

    Article  CAS  Google Scholar 

  4. Sundberg, S. A. (2000) High-throughput and ultra-high-throughput screening: solution- and cell-based approaches. Curr. Opin. Biotechnol. 11, 47–53.

    Article  CAS  Google Scholar 

  5. Mere, L., Bennett, T., Coassin, P., England, P., Hamman, B., Rink, T., Zimmerman, S., and Negulescu, P. (1999) Miniaturized FRET assays and microfluidics: key components for ultra-high-throughput screening. Drug Discov. Today 4, 363–369.

    Article  CAS  Google Scholar 

  6. Paegel Brian, M., Blazej Robert, G., and Mathies Richard, A. (2003) Microfluidic devices for DNA sequencing: sample preparation and electrophoretic analysis. Curr. Opin. Biotechnol. 14, 42–50.

    Article  CAS  Google Scholar 

  7. Righetti, P. G., Gelfi, C., and D’Acunto, M. R. (2002) Recent progress in DNA analysis by capillary electrophoresis. Electrophoresis 23, 1361–1374.

    Article  CAS  Google Scholar 

  8. Foquet, M., Korlach, J., Zipfel, W., Webb, W. W., and Craighead, H. G. (2002) DNA fragment sizing by single molecule detection in submicrometer-sized closed fluidic channels. Anal. Chem. 74, 1415–1422.

    Article  CAS  Google Scholar 

  9. Cabodi, M., Turner, S. W. P., and Craighead, H. G. (2002) Entropic Recoil Separation of Long DNA Molecules. Anal. Chem. 74, 5169–5174.

    Article  CAS  Google Scholar 

  10. Fodor, S. P. A. (1997) DNA sequencing: Massively parallel genomics. Science 277, 393, 395.

    Article  Google Scholar 

  11. Kennedy, G. C., Matsuzaki, H., Dong, S., Liu, W.-M., Huang, J., Liu, G., Su, X., Cao, M., Chen, W., Zhang, J., Liu, W., Yang, G., Di, X., Ryder, T., He, Z., Surti, U., Phillips, M. S., Boyce-Jacino, M. T., Fodor, S. P. A., and Jones, K. W. (2003) Large-scale genotyping of complex DNA. Nature Biotechnol. 21, 1233–1237.

    Article  CAS  Google Scholar 

  12. Lipshutz, R. J., Fodor, S. P. A., Gingeras, T. R., and Lockhart, D. J. (1999) High density synthetic oligonucleotide arrays. Nature Genet. 21, 20–24.

    Article  CAS  Google Scholar 

  13. Sia, S. K., Linder, V., Parviz, B. A., Siegel, A., and Whitesides, G. M. (2004) An integrated approach to a portible and low-cost immunoassy for resource-poor settings. Angew. Chem. Int. Ed. 43, 498–502.

    Article  CAS  Google Scholar 

  14. Linder, V., Verpoorte, E., De Rooij, N. F., Sigrist, H., and Thormann, W. (2002) Application of surface biopassivated disposable poly(dimethylsiloxane)/glass chips to a heterogeneous competitive human serum immunoglobulin G immunoassay with incorporated internal standard. Electrophoresis 23, 740–749.

    Article  CAS  Google Scholar 

  15. Rossier, J. S., and Girault, H. H. (2001) Enzyme linked immunosorbent assay on a microchip with electrochemical detection. Lab on a Chip 1, 153–157.

    Article  CAS  Google Scholar 

  16. Lai, S., Wang, S., Luo, J., Lee, L. J., Yang, S.-T., and Madou, M. J. (2004) Design of a compact disk-like microfluidic platform for enzyme-linked immunosorbent assay. Anal. Chem. 76, 1832–1837.

    Article  CAS  Google Scholar 

  17. Song, J. M., Griffin, G. D., and Vo-Dinh, T. (2003) Application of an integrated microchip system with capillary array electrophoresis to optimization of enzymatic reactions. Anal. Chim. Acta 487, 75–82.

    Article  CAS  Google Scholar 

  18. Stenger, D. A., Andreadis, J. D., Vora, G. J., and Pancrazio, J. J. (2002) Potential applications of DNA microarrays in biodefense-related diagnostics. Curr. Opin. Biotechnol. 13, 208–212.

    Article  CAS  Google Scholar 

  19. Sadik, O. A., Land, W. H., Jr., and Wang, J. (2003) Targeting chemical and biological warfare agents at the molecular level. Electroanalysis 15, 1149–1159.

    Article  CAS  Google Scholar 

  20. Reynolds, J. G., and Hart, B. R. (2004) Nanomaterials and their application to defense and homeland security. JOM 56, 36–39.

    Article  CAS  Google Scholar 

  21. Needham, S. R. (2003) Bioanalytical method validation: example, HPLC/MS/MS bioanalysis of an anti-nerve gas agent drug for homeland security. Am. Pharm. Rev. 6, 86, 88, 90–91.

    Google Scholar 

  22. Yadav, P., and Blaine, L. (2004) Microbiological threats to homeland security. IEEE Eng. Med. Bio. Mag. 23, 136–141.

    Article  Google Scholar 

  23. Kun, L. (2004) Technology and policy review for homeland security. IEEE Eng. Med. Bio. Mag. 23, 30–44.

    Article  Google Scholar 

  24. Gluodenis, T., and Harrison, S. (2004) Homeland security and bioterrorism applications: detection of bioweapon pathogens by microfluidic-based electrophoretic DNA analysis. Med. Lab. Observ. 36, 34–38.

    Google Scholar 

  25. Xia, Y., and Whitesides, G. M. (1998) Soft Lithography. Angew. Chem. Int. Ed. 37, 550–575.

    Article  CAS  Google Scholar 

  26. Xia, Y., and Whitesides, G. M. (1998) Soft Lithography. Ann. Rev. Mater. Sci. 28, 153–184.

    Article  CAS  Google Scholar 

  27. Sia, S. K., and Whitesides, G. M. (2003) Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis 24, 3563–3576.

    Article  CAS  Google Scholar 

  28. Whitesides, G. M., and Stroock, A. D. (2001) Flexible methods for microfluidics. Phys. Today 54, 42–48.

    Article  CAS  Google Scholar 

  29. Schmid, H., and Michel, B. (2000) Siloxane polymers for high-resolution, high-accuracy soft lithography. Macromolecules 33, 3042–3049.

    Article  CAS  Google Scholar 

  30. Jiang, X., and Whitesides, G. M. (2003) Engineering microtools in polymers to study cell biology. Eng. Life Sci. 3, 475–480.

    Article  CAS  Google Scholar 

  31. Folch, A., and Toner, M. (2000) Microengineering of cellular interactions. Annu. Rev. Biomed. Eng 2, 227–256.

    Article  CAS  Google Scholar 

  32. Linder, V., Wu, H., Jiang, X., and Whitesides, G. M. (2003) Rapid prototyping of 2D structures with feature sizes larger than 8 μm. Anal. Chem. 75, 2522–2527.

    Article  CAS  Google Scholar 

  33. Qin, D., Xia, Y., and Whitesides, G. M. (1996) Rapid prototyping of complex structures with feature sizes larger than 20 µm. Adv. Mater. 8, 917–919.

    Article  CAS  Google Scholar 

  34. Love, J. C., Wolfe, D. B., Jacobs, H. O., and Whitesides, G. M. (2001) Microscope projection photolithography for rapid prototyping of masters with micron-scale features for use in soft lithography. Langmuir 17, 6005–6012.

    Article  CAS  Google Scholar 

  35. Wu, H., Odom, T. W., and Whitesides, G. M. (2002) Connectivity of features in microlens array reduction photolithography: Generation of different patterns using a single photomask. J. Am. Chem. Soc. 124, 7288–7289.

    Article  CAS  Google Scholar 

  36. Wu, H., Odom, T. W., and Whitesides, G. M. (2002) Reduction photolithography using microlens arrays: Applications in grayscale photolithography. Anal. Chem. 74, 3267–3273.

    Article  CAS  Google Scholar 

  37. Wu, H., Odom, T. W., and Whitesides, G. M. (2002) Generation of chrome masks with micrometer-scale features using microlens lithography. Adv. Mater. 14, 1213–1216.

    Article  CAS  Google Scholar 

  38. Wu, M. H., and Whitesides, G. M. (2001) Fabrication of arrays of two-dimensional micropatterns using microspheres as microlenses for projection lithography. Appl. Phys. Lett. 78, 2273–2275.

    Article  CAS  Google Scholar 

  39. Wu, M.-H., Paul, K. E., Yang, J., and Whitesides, G. M. (2002) Fabrication of frequency-selective surfaces using microlens photolithography. Appl. Phys. Lett. 80, 3500–3502.

    Article  CAS  Google Scholar 

  40. Ostuni, E., Kane, R., Chen, C. S., Ingber, D. E., and Whitesides, G. M. (2000) Patterning mammalian cells using elastomeric membranes. Langmuir 16, 7811–7819.

    Article  CAS  Google Scholar 

  41. Folch, A., Jo, B.-H., Beebe, D., and Toner, M. (2000) Microfabricated elastomeric stensils for micropatterning cell cultures. J. Biomed. Mater. Res. 52, 346–353.

    Article  CAS  Google Scholar 

  42. Hatch, A., Kamholz, A. E., Hawkins, K. R., Munson, M. S., Schilling, E. A., Weigl, B. H., and Yager, P. (2001) A rapid diffusion immunoassay in a T-sensor. Nature Biotechnol. 19, 461–465.

    Article  CAS  Google Scholar 

  43. Chiem, N. H., and Harrison, D. J. (1998) Microchip systems for immunoassay: an integrated immunoreactor with electrophoretic separation for serum theophylline determination. Clin. Chem. 44, 591–598.

    CAS  Google Scholar 

  44. Ismagilov, R. F., Ng, J. M. K., Kenis, P. J. A., and Whitesides, G. M. (2001) Microfluidic arrays of fluid-fluid diffusional contacts as detection elements and combinatorial tools. Anal. Chem. 73, 5207–5213.

    Article  CAS  Google Scholar 

  45. Bernard, A., Michel, B., and Delamarche, E. (2001) Micromosaic immunoassays. Anal. Chem. 73, 8–12.

    Article  CAS  Google Scholar 

  46. Jiang, X., Ng, J. M. K., Stroock, A. D., Dertinger, S. K. W., and Whitesides, G. M. (2003) A miniaturized, parallel, serially diluted immunoassay for analyzing multiple antigens. J. Am. Chem. Soc. 125, 5294–5295.

    Article  CAS  Google Scholar 

  47. Harris, C. M. (2003) Shrinking the LC landscape. Anal. Chem. 75, 64A–69A.

    CAS  Google Scholar 

  48. Slentz, B. E., Penner, N. A., Lugowska, E., and Regnier, F. (2001) Nanoliter capillary electrochromatography columns based on collocated monolithic support structures molded in poly(dimethyl siloxane). Electrophoresis 22, 3736–3743.

    Article  CAS  Google Scholar 

  49. Jiang, Y., Wang, P.-C., Locascio, L. E., and Lee, C. S. (2001) Integrated plastic microfluidic devices with ESI-MS for drug screening and residue analysis. Anal. Chem. 73, 2048–2053.

    Article  CAS  Google Scholar 

  50. Kim, J. S., and Knapp, D. R. (2001) Microfabrication of polydimethylsiloxane electrospray ionization emitters. J. Chromatogr. A 924, 137–145.

    Article  CAS  Google Scholar 

  51. Huikko, K., Oestman, P., Grigoras, K., Tuomikoski, S., Tiainen, V. M., Soininen, A., Puolanne, K., Manz, A., Franssila, S., Kostiainen, R., and Kotiaho, T. (2003) Poly(dimethylsiloxane) electrospray devices fabricated with diamond-like carbon-poly(dimethylsiloxane) coated SU-8 masters. Lab on a Chip 3, 67–72.

    Article  CAS  Google Scholar 

  52. Fu, A. Y., Chou, H.-P., Spence, C., Arnold, F. H., and Quake, S. R. (2002) An integrated microfabricated cell sorter. Anal. Chem. 74, 2451–2457.

    Article  CAS  Google Scholar 

  53. Deng, T., Prentiss, M., and Whitesides, G. M. (2002) Fabrication of magnetic microfiltration systems using soft lithography. Appl. Phys. Lett. 80, 461–463.

    Article  CAS  Google Scholar 

  54. Cho, B. S., Schuster, T. G., Zhu, X., Chang, D., Smith, G. D., and Takayama, S. (2003) Passively driven integrated microfluidic system for separation of motile sperm. Anal. Chem. 75, 1671–1675.

    Article  CAS  Google Scholar 

  55. Beebe, D., Wheeler, M., Zeringue, H., Walters, E., and Raty, S. (2002) Microfluidic technology for assisted reproduction. Theriogenology 57, 125–135.

    Article  CAS  Google Scholar 

  56. Takayama, S., McDonald, J. C., Ostuni, E., Liang, M. N., Kenis, P. J. A., Ismagilov, R. F., and Whitesides, G. M. (1999) Patterning cells and their environments using multiple laminar fluid flows in capillary networks. Proc. Natl. Acad. Sci. U.S.A. 96, 5545–5548.

    Article  CAS  Google Scholar 

  57. Chiu, D. T., Li Jeon, N., Huang, S., Kane, R. S., Wargo, C. J., Choi, I. S., Ingber, D. E., and Whitesides, G. M. (2000) Patterned deposition of cells and proteins onto surfaces by using three-dimensional microfluidic systems. Proc. Natl. Acad. Sci. U.S.A. 97, 2408–2413.

    Article  CAS  Google Scholar 

  58. Takayama, S., Ostuni, E., LeDuc, P., Naruse, K., Ingber, D. E., and Whitesides, G. M. (2001) Subcellular positioning of small molecules. Nature 411, 1016.

    Article  CAS  Google Scholar 

  59. Sawano, A., Takayama, S., Matsuda, M., and Miyawaki, A. (2002) Lateral propagation of EGF signaling after local stimulation is dependent on receptor density. Dev. Cell 3, 245–257.

    Article  CAS  Google Scholar 

  60. McDonald, J. C., Duffy, D. C., Anderson, J. R., Chiu, D. T., Wu, H., and Whitesides, G. M. (2000) Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21, 27–40.

    Article  CAS  Google Scholar 

  61. Kane, R. S., Deschatelets, P., and Whitesides, G. M. (2003) Kosmotropes form the basis of protein-resistant surfaces. Langmuir 19, 2388–2391.

    Article  CAS  Google Scholar 

  62. Herrwerth, S., Rosendahl, T., Feng, C., Fick, J., Eck, W., Himmelhaus, M., Dahint, R., and Grunze, M. (2003) Covalent coupling of antibodies to self-assembled monolayers of carboxy-functionalized poly(ethylene glycol): Protein resistance and specific binding of biomolecules. Langmuir 19, 1880–1887.

    Article  CAS  Google Scholar 

  63. Veiseh, M., Zareie, M. H., and Zhang, M. (2002) Highly selective protein patterning on gold-silicon substrates for biosensor applications. Langmuir 18, 6671–6678.

    Article  CAS  Google Scholar 

  64. Ostuni, E., Chapman, R. G., Liang, M. N., Meluleni, G., Pier, G., Ingber, D. E., and Whitesides, G. M. (2001) Self-assembled monolayers that resist the adsorption of proteins and the adhesion of bacterial and mammalian cells. Langmuir 17, 6336–6343.

    Article  CAS  Google Scholar 

  65. Schwendel, D., Dahint, R., Herrwerth, S., Schloerholz, M., Eck, W., and Grunze, M. (2001) Temperature dependence of the protein resistance of poly- and oligo(ethylene glycol)-terminated alkanethiolate monolayers. Langmuir 17, 5717–5720.

    Article  CAS  Google Scholar 

  66. Ostuni, E., Chapman, R. G., Holmlin, R. E., Takayama, S., and Whitesides, G. M. (2001) A survey of structure-property relationships of surfaces that resist the adsorption of protein. Langmuir 17, 5605–5620.

    Article  CAS  Google Scholar 

  67. Zhu, B., Eurell, T., Gunawan, R., and Leckband, D. (2001) Chain-length dependence of the protein and cell resistance of oligo(ethylene glycol)-terminated self-assembled monolayers on gold. J. Biomed. Mater. Res. 56, 406–416.

    Article  CAS  Google Scholar 

  68. Holmlin, R. E., Chen, X., Chapman, R. G., Takayama, S., and Whitesides, G. M. (2001) Zwitterionic SAMs that resist nonspecific adsorption of protein from aqueous buffer. Langmuir 17, 2841–2850.

    Article  CAS  Google Scholar 

  69. Chapman, R. G., Ostuni, E., Liang, M. N., Meluleni, G., Kim, E., Yan, L., Pier, G., Warren, H. S., and Whitesides, G. M. (2001) Polymeric thin films that resist the adsorption of proteins and the adhesion of bacteria. Langmuir 17, 1225–1233.

    Article  CAS  Google Scholar 

  70. Chapman, R. G., Ostuni, E., Takayama, S., Holmlin, R. E., Yan, L., and Whitesides, G. M. (2000) Surveying for surfaces that resist the adsorption of proteins. J. Am. Chem. Soc. 122, 8303–8304.

    Article  CAS  Google Scholar 

  71. Chapman, R. G., Ostuni, E., Yan, L., and Whitesides, G. M. (2000) Preparation of mixed Self-Assembled Monolayers (SAMs) that resist adsorption of proteins using the reaction of amines with a SAM that presents interchain carboxylic anhydride groups. Langmuir 16, 6927–6936.

    Article  CAS  Google Scholar 

  72. Ostuni, E., Yan, L., and Whitesides, G. M. (1999) The interaction of proteins and cells with self-assembled monolayers of alkanethiolates on gold and silver. Colloids Surf. 15, 3–30.

    Article  CAS  Google Scholar 

  73. Pertsin, A. J., Grunze, M., and Garbuzova, I. A. (1998) Low-energy configurations of methoxy triethylene glycol terminated alkanethiol self-assembled monolayers and their relevance to protein adsorption. J. Phys. Chem. B 102, 4918–4926.

    Article  CAS  Google Scholar 

  74. Mrksich, M., Dike, L. E., Tien, J., Ingber, D. E., and Whitesides, G. M. (1997) Using microcontact printing to pattern the attachment of mammalian cells to self-assembled monolayers of alkanethiolates on transparent films of gold and silver. Exper. Cell Res. 235, 305–313.

    Article  CAS  Google Scholar 

  75. Mrksich, M., Chen, C. S., Xia, Y., Dike, L. E., Ingber, D. E., and Whitesides, G. M. (1996) Controlling cell attachment on contoured surfaces with self-assembled monolayers of alkanethiolates on gold. Proc. Nat. Acad. Sci. U.S.A. 93, 10775–10778.

    Article  CAS  Google Scholar 

  76. DiMilla, P. A., Folkers, J. P., Biebuyck, H. A., Haerter, R., Lopez, G. P., and Whitesides, G. M. (1994) Wetting and Protein Adsorption on Self-Assembled Monolayers of Alkanethiolates Supported on Transparent Films of Gold. J. Am. Chem. Soc. 116, 2225–2226.

    Article  CAS  Google Scholar 

  77. Donzel, C., Geissler, M., Bernard, A., Wolf, H., Michel, B., Hilborn, J., and Delamarche, E. (2001) Hydrophilic poly(dimethylsiloxane) stamps for microcontact printing. Adv. Mater. 13, 1164–1167.

    Article  CAS  Google Scholar 

  78. Bernard, A., Renault, J. P., Michel, B., Bosshard, H. R., and Delamarche, E. (2000) Microcontact printing of proteins. Adv. Mater. 12, 1067–1070.

    Article  CAS  Google Scholar 

  79. Graber, D. J., Zieziulewics, T. J., Lawrence, D. A., Shain, W., and Turner, J. N. (2003) Antigen binding specificity of antibodies patterned by microcontact printing. Langmuir 19, 5431–5434.

    Article  CAS  Google Scholar 

  80. Renault, J. P., Bernard, A., Bietsch, A., Michel, B., Bosshard, H. R., Delamarche, E., Kreiter, M., Hecht, B., and Wild, U. P. (2003) Fabricating arrays of single protein molecules on glass using microcontact printing. J. Phys. Chem. B 107, 703–711.

    Article  CAS  Google Scholar 

  81. Renault, J. P., Bernard, A., Juncker, D., Michel, B., Bosshard, H. R., and Delamarche, E. (2002) Fabricating microarrays of functional proteins using affinity contact printing. Angew. Chem. Int. Ed. 41, 2320–2323.

    Article  CAS  Google Scholar 

  82. Tan, J. L., Tien, J., and Chen, C. S. (2002) Microcontact printing of proteins on mixed self-assembled monolayers. Langmuir 18, 519–523.

    Article  CAS  Google Scholar 

  83. Xu, C., Taylor, P., Ersoz, M., Fletcher, P. D. I., and Paunov, V. N. (2003) Microcontact printing of DNA-surfactant arrays on solid substrates. J. Mater. Chem. 13, 3044–3048.

    Article  CAS  Google Scholar 

  84. Lange, S. A., Benes, V., Kern, D. P., Hoerber, J. K. H., and Bernard, A. (2004) Microcontact printing of DNA molecules. Anal. Chem. 76, 1641–1647.

    Article  CAS  Google Scholar 

  85. Lahiri, J., Ostuni, E., and Whitesides, G. M. (1999) Patterning ligands on reactive SAMs by microcontact printing. Langmuir 15, 2055–2060.

    Article  CAS  Google Scholar 

  86. Chen, C. S., Mrksich, M., Huang, S., Whitesides, G. M., and Ingber, D. E. (1997) Geometric control of cell life and death. Science 276, 1425-1428.

    Article  CAS  Google Scholar 

  87. Ostuni, E., Grzybowski, B., Mrksich, M., Roberts, C. S., and Whitesides, G. M. (2003) Adsorption of proteins to hydrophobic sites on mixed self-assembled monolayers. Langmuir 19, 1861–1872.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Wolfe, D.B., Qin, D., Whitesides, G.M. (2010). Rapid Prototyping of Microstructures by Soft Lithography for Biotechnology. In: Hughes, M., Hoettges, K. (eds) Microengineering in Biotechnology. Methods in Molecular Biology, vol 583. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-106-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-106-6_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-58829-381-7

  • Online ISBN: 978-1-60327-106-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics