Skip to main content

Wireless Endoscopy: Technology and Design

  • Protocol
  • First Online:
Book cover Microengineering in Biotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 583))

  • 1887 Accesses

Abstract

In this chapter we review the current capsule technology and the more conventional “gold standard” technologies against which the wireless devices are compared. Over the years there have been several implementations of capsule devices of growing sophistication as new technology has become available. A notable feature is the extent to which the devices available at any given time have relied upon other more mainstream technologies from which capsule builders have been able to borrow. As an inevitable consequence, device complexity and functionality have increased.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. S. Mackay (1961) Radio telemetering from within the body. Science 134, 1196–1202.

    Article  CAS  Google Scholar 

  2. G. Iddan, G. Meron, A. Glukhovsky, and P. Swain (2000) Wireless capsule endoscopy. Nature 405, 417.

    Article  CAS  Google Scholar 

  3. G. X. Zhou (1989) Swallowable or implantable body temperature telemeter – Body temperature radio pill. Proceedings of IEEE Fifteenth Annual Northeast Bioengineering Conference, Boston, MA.

    Google Scholar 

  4. R. A. Casper (1992) Medical capsule device actuated by radio-frequency (RF) signal, USA patent #5,170, 801.

    Google Scholar 

  5. N. J. Clear, A. Milton, M. Humphrey, B. T. Henry, M. Wulff, D. J. Nichols, R. J. Anziano, and I. Wilding (2001) Evaluation of the Intelisite capsule to deliver theophyline and frusemide tablets to the small intestine and colon. European Journal of Pharmaceutical Sciences 13, 375–384.

    Article  CAS  Google Scholar 

  6. W. Weitschies, M. Karaus, D. Cordini, L. Trahms, J. Breitkreutz, and W. Semmler (2001) Magnetic marker monitoring of disintegrating capsules. European Journal of Pharmaceutical Sciences 13, 411–416.

    Article  CAS  Google Scholar 

  7. L. Phee, D. Accoto, A. Menciassi, C. Stefanini, M. C. Carrozza, and P. Dario (2002) Analysis and development of locomotion devices for the gastrointestinal tract. IEEE Transactions on Biomedical Engineering 49(6), 613–616.

    Article  Google Scholar 

  8. S. Guo, K. Sugimoto, T. Fukuda, and K. Oguro (1999) A new type of capsule medical micropump. Proceedings of the 19th IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 55–60.

    Google Scholar 

  9. M. Sendoh, K. Ishiyama, and K. I. Arai (2003) Fabrication of magnetic actuator for use in a capsule endoscope. IEEE Transactions on Magnetics 39(5), 3232–3234.

    Article  Google Scholar 

  10. H. G. Noeller (1961) The use of a radiotransmitter capsule for the measurement of gastric pH. German Medical Monthly 6, 3.

    Google Scholar 

  11. R. Lee (1995) BSAVA Manual of Small Animal Diagnostic Imaging, 2 ed., British Small Animal Veterinary Association.

    Google Scholar 

  12. P. B. Cotton and C. B. Williams (1980) Practical Gastrointestinal Endoscopy. Blackwell Scientific, Oxford.

    Google Scholar 

  13. L. M. Gladman and D. A. Gorard (2003) General practitioner and hospital specialist attitudes to functional gastrointestinal disorders. Alimentary Pharmacology and Therapeutics 17(5), 651–654.

    Article  CAS  Google Scholar 

  14. R. S. Mackay and B. Jacobson (1957) Endoradiosonde. Nature 179, 1239–1240.

    Article  CAS  Google Scholar 

  15. J. T. Farrar, V. K. Zworykin, and J. Baum (1957) Pressure-sensitive telemetering capsule for study of gastrointestinal motility. Science 126, 975–976.

    Article  CAS  Google Scholar 

  16. J. E. Pandolfino, J. E. Ritcher, T. Ours, R. N. Jason, M. Guardino, J. Chapman, and P. J. Kahrilas (2003) Ambulatory esophageal pH monitoring using a wireless system. American Journal of Gastroenterology 98(4), 740–749.

    Article  Google Scholar 

  17. Y. Sasaki, R. Hada, H. Nakajima, S. Fukada, and A. Munakata (1997) Improved localizing method of radiopill in measurement of entire gastrointestinal pH profiles: Colonic luminal pH innormal subjects and patients with Crohn's disease. American Journal of Gastroenterology 92(1), 114–118.

    CAS  Google Scholar 

  18. A. G. Press, I. A. Hauptmann, B. Fuchs, M. Fuchs, K. Ewe, and G. Ramadori (1998) Gastrointestinal pH profiles in patients with inflammatory bowel disease. Alimentary Pharmacology & Therapeutics 12, 673–678.

    Article  CAS  Google Scholar 

  19. H. S. Wolff (1961) The radio pill. New Scientist 261, 419–421.

    Google Scholar 

  20. B. W. Watson and A. W. Kay (1965) Radio-telemetering with special reference to the gastro-intestinal track. In Biomechanics and Related Bio-Engineering Topics, pp. 111–127. Pergamon Press, Oxford.

    Google Scholar 

  21. S. J. Meldrum, B. W. Watson, H. C. Riddle, R. L. Brown, and G. E. Sladen (1972) pH profile of gut as measured by radiotelemetry capsule. British Medical Journal, 104–106.

    Google Scholar 

  22. R. H. Colson, B. W. Watson, P. D. Fairclough, J. A. Walker-Smith, C. A. Campbell, D. Bellamy, and S. M. Hinsull (1981) An accurate, long term pH sensitive radio pill for ingestion and implantation. Biotelemetry Patient Monitoring 8(4), 213–227.

    CAS  Google Scholar 

  23. D. F. Evans, G. Pye, A. G. Clark, T. J. Dyson, and J. D. Hardcastle (1988) Measurement of gastrointestinal pH profiles in normal ambulant human subjects. Gut 29, 1035–1041.

    Article  CAS  Google Scholar 

  24. L. Antoniazzi, H. T. Hua, and C. G. Streets (2002) Comparison of normal values obtained with the BRAVO, a catheter-free system, and conventional esophageal pH monitoring. Digestive Disease Week 2002, USA, abstract # M1700.

    Google Scholar 

  25. P. Swain (2003) Wireless capsule endoscopy. Gut 52(Suppl IV), 48–50.

    Google Scholar 

  26. K. Kramer and L. B. Kinter (2003) Evaluation and applications of radiotelemetry in small laboratory animals. Physiological Genomics 13, 197–205.

    Google Scholar 

  27. G. Peters (1997) A new device for monitoring gastric pH in free-ranging animals. American Journal of Physiology 273(3), G748–G753.

    CAS  Google Scholar 

  28. J. M. D. Enemark, G. Peters, and R. J. Jørgensen (2003) Continuous monitoring of rumen pH – a case study with cattle. Journal of Veterinary Medicine A 40, 62–66.

    Google Scholar 

  29. ISO 11785 and ISO 3166.

    Google Scholar 

  30. R. A. Powers (1995) Batteries for low power electronics. Proceedings of IEEE 83(4), 687–693.

    Article  Google Scholar 

  31. ‘Recommendation 70-30 relating to the use of short range devices (SRD) (1997)’ Conf. Eur. Postal Telecomm. Admin. (CEPT), Tromso, Norway, CEPT/ERC/TR70-03.

    Google Scholar 

  32. N. Aydin, T. Arslan, and D. R. S. Cumming (2002) Design and implementation of a spread spectrum based communication system for an ingestible capsule. Proceedings of Annual International Conference IEEE EMBS.

    Google Scholar 

  33. I. Nikolaidis, M. Barbeau, and E. Kranakis (Eds.) (2004) Proceedings of Ad-Hoc, Mobile, and Wireless Networks: Third International Conference, Lecture Notes in Computer Science 3158, Springer-Verlag, Heidelberg.

    Google Scholar 

  34. H. J. Park, I. Y. Park, J. W. Lee, B. S. Song, C. H. Won, and J. H. Cho (2003) Design of miniaturized telemetry module for bi-directional wireless endoscopes. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E86-A(6), 1487–1491.

    Google Scholar 

  35. L. Wang, E. A. Johannessen, L. Cui, C. Ramsey, T. B. Tang, M. Ahmadian, A. Astaras, P. W. Dickman, J. M. Cooper, A. F. Murray, B. W. Flynn, S. P. Beaumont, and D. R. S. Cumming (2003) Networked Wireless Microsystem for Remote Gastrointestinal Monitoring. Digest of Transducers 03.

    Google Scholar 

  36. J. W. Gardner (1994) Microsensors – Principles and Applications. Wiley, Chichester.

    Google Scholar 

  37. A. Hierlemann and H. Baltes (2003) CMOS-based chemical microsensors. Analyst 128, 15–28.

    Article  CAS  Google Scholar 

  38. C. Krüger, J.-G. Pfeffer, W. Mokwa, G. vom Bögel, R. Günther, T. Schmitz-Rode, and U. Schnakenberg (2002) Intravascular pressure monitoring system. Proceedings of European Conference on Solid-State Transducers (EUROSENSORS), M3C1.

    Google Scholar 

  39. H. Dudaicevs, M. Kandler, Y. Manoli, W. Mokwa, and E. Speigel (1994) Surface micromachined pressure sensors with integrated CMOS read-out electronics. Sensors and Actuators A 43(1–3), 157–163.

    Article  Google Scholar 

  40. E. A. Johannessen, L. Wang, L. Cui, T. B. Tang, M. Ahmadian, A. Astaras, S. W. J. Reid, P. S. Yam, A. F. Murray, B. Flynn, S. P. Beaumont, D. R. S. Cumming, and J. M. Cooper (2004) Implementation of multichannel sensors for remote biomedical measurements in a microsystems format. IEEE Transactions on Biomedical Engineering 51(3), 525–535.

    Article  Google Scholar 

  41. C. Hagleitner, D. Lange, A. Hierlemann, O. Brand, and H. Baltes (2002) CMOS single-chip gas detection system comprising capacitive, calorimetric and mass-sensitive microsensors. IEEE Journal of Solid-State Circuits 37, 1867–1878.

    Article  Google Scholar 

  42. P. A. Hammond, D. R. S. Cumming, and D. Ali (2002) A single-chip pH sensor fabricated by a conventional CMOS process. Proceedings of IEEE Sensors 2002-1, 350–355.

    Article  Google Scholar 

  43. B. D. DeBusschere and G. T. A. Kovacs (2001) Portable cell-based biosensor system using integrated CMOS cell-cartridges. Biosensors and Bioelectronics 16, 543–556.

    Article  CAS  Google Scholar 

  44. M. L. Simpson, G. S. Sayler, B. M. Applegate, S. Ripp, D. E. Nivens, M. J. Paulus, and G. E. Jellison, Jr. (1998) Bioluminescent-bioreporter integrated circuits form novel whole-cell biosensors, Trends Biotechnology 16, 332–338.

    Article  CAS  Google Scholar 

  45. Y. Zhang, K. K. Ma, and Q. Yao (1999) A software/hardware co-design methodology for embedded microprocessor core design. IEEE Transactions on Consumer Electronics 45(4), 1241–1246.

    Article  Google Scholar 

  46. K. Kundert, H. Chang, D. Jefferies, G. Lamant, E. Malavasi, and F. Sendig (2000) Design of mixed-signal systems-on-a-chip. IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems 19(12), 1561–1571.

    Article  Google Scholar 

  47. S. Sjoholm and L. Lindh (1997) VHDL for Designers. Prentice Hall, Europe.

    Google Scholar 

  48. J. Toftgard, S. N. Hornsleth, and J. Andersen (1993) Effects on portable antennas of the presence of a person. IEEE Transactions on Antennas Propagation 41(6), 739–746.

    Article  Google Scholar 

  49. M. Okoniewski and M. A. Stuchly (1996) A study of the handset antenna and human body interaction. IEEE Transactions on Microwave Theory and Techniques 44(10), Part 2, 1855–1864.

    Article  Google Scholar 

  50. W. G. Scanlon and N. E. Evans (2000) Radiowave propagation from a tissue-implanted source at 418 MHz and 916.5 MHz. IEEE Transactions on Biomedical Engineering 47(4), 527–534.

    Article  CAS  Google Scholar 

  51. L. C. Chirwa, P. A. Hammond, S. Roy, and D. R. S. Cumming (2003) Electromagnetic radiation from ingested sources in the human intestine between 150 MHz and 1.2 GHz. IEEE Transactions on Biomedical Engineering 50(4), 484–492.

    Article  Google Scholar 

  52. M. Ahmadian, B. W. Flynn, A. F. Murray, and D. R. S. Cumming (2003) Miniature transmitter for implantable micro systems. IEEE EMBS Proceedings of Annual International Conference 4, 3028–3031,.

    Google Scholar 

  53. S. Roundy, D. Steingart, L. Frechette, P. Wright, and J. Rabaey (2004) Power sources for wireless sensor networks. Lecture Notes in Computer Science 2920, 1–17.

    Article  Google Scholar 

  54. Data presented is from the United Kingdom regulations for adults exposed to radiation in the band from 10 MHz to 60 MHz taken from http://www.who.org.

  55. J. M. Chovelon, N. Jaffrezic-Renault, Y. Cros, J. J. Fombon, and D. Pedone (1991) Monitoring of ISFET encapsulation by impedance measurements. Sensors and Actuators 3(1), 43–50.

    Article  Google Scholar 

  56. A. Sibbald, P. D. Whalley, and A. K. Covington (1984) A miniature flow-through cell with a four-function CHEMFET integrated circuit for simultaneous measurements of potassium, hydrogen, calcium and sodium ions. Analytica Chimica Acta, 159, 47–62.

    Article  CAS  Google Scholar 

  57. A. Grisel, C. Francis, E. Verney, and G. Mondin (1989) Packaging technologies for integrated electrochemical sensors. Sensors and Actuators B, 17, 285–295.

    Article  CAS  Google Scholar 

  58. I. Gràcia, C. Cané, and E. Lora-Tamayo (1995) Electrical characterisation of the aging of sealing materials for ISFET chemical sensors. Sensors and Actuators B 24(1–3), 206–210.

    Article  Google Scholar 

  59. J. Münoz, A. Bratov, R. Mas, N. Abramova, C. Domínguez, and J. Bartrolí (1996) Planar compatible polymer technology for packaging of chemical microsensors. Journal of Electrochemical Society 143(6), 2020–2025.

    Article  Google Scholar 

  60. T. Matsuo and M. Esashi (1981) Methods of ISFET fabrication. Sensors and Actuators 1, 77–96.

    Article  CAS  Google Scholar 

  61. A. Bratov, J. Münoz, C. Dominguez, and J. Bartrolí (1995) Photocurable polymers applied as encapsulating materials for ISFET production. Sensors and Actuators B 24, 823–825.

    Article  Google Scholar 

  62. P. A. Hammond and D. R. S. Cumming (2004) Encapsulation of a liquid-sensing microchip using SU-8 photoresist. Microelectronic Engineering 73–74, 893–897.

    Article  Google Scholar 

  63. K. Tsukada, M. Sebata, Y. Miyahara, and H. Miyagi (1989) Long-life multiple-ISFETs with polymeric gates. Sensors and Actuators 18, 329–336.

    Article  CAS  Google Scholar 

  64. M. Fleischer, B. Ostrick, R. Pohle, E. Simon, H. Meixner, C. Bilger, and F. Daeche (2001) Low-power gas sensors based on work-function measurement in low-cost hybrid flipchip technology. Sensors and Actuators B 80, 169–173.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Cumming, D.R., Hammond, P.A., Wang, L. (2010). Wireless Endoscopy: Technology and Design. In: Hughes, M., Hoettges, K. (eds) Microengineering in Biotechnology. Methods in Molecular Biology, vol 583. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-106-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-106-6_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-58829-381-7

  • Online ISBN: 978-1-60327-106-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics