Skip to main content

Neural Networks Predict Protein Structure and Function

  • Protocol
Artificial Neural Networks

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 458))

Abstract

Both supervised and unsupervised neural networks have been applied to the prediction of protein structure and function. Here, we focus on feedforward neural networks and describe how these learning machines can be applied to protein prediction. We discuss how to select an appropriate data set, how to choose and encode protein features into the neural network input, and how to assess the predictor's performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

aa:

amino acids

AUC:

area under the ROC curve

FN:

false negative

FP:

false positive

FPR:

false- positive rate

NFP:

number of free parameters

NHN:

number of hidden nodes

NN:

feedforward neural network

PDB:

protein data bank

ROC:

receiver operating characteristics

SS:

secondary structure

TN:

true negative

TP:

true positive

TPR:

true-positive rate

References

  1. Przybylski D, Rost B (2006) Predicting simplified features of protein structure. In: Lengauer T (ed) Bioinformatics: from genomes to therapies. Wiley-VCH.

    Google Scholar 

  2. Blom N, Hansen J, Blaas D, Brunak S (1996) Cleavage site analysis in picornaviral polyproteins: discovering cellular targets by neural networks Protein Sci 5:2203–2216.

    Article  CAS  PubMed  Google Scholar 

  3. Nielsen H, Engelbrecht J, Brunak S, von Heijne G (1997) A neural network method for identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites Int J Neural Syst 8:581–599.

    Article  CAS  PubMed  Google Scholar 

  4. Nielsen H, Brunak S, von Heijne G (1999) Machine learning approaches for the prediction of signal peptides and other protein sorting signals Protein Eng 12:3–9.

    Article  CAS  PubMed  Google Scholar 

  5. Li X, Romero P, Rani M, Dunker AK, Obradovic Z (1999) Predicting protein disorder for N-, C-, and internal regions. Genome inform ser workshop. Genome Inform. 10:30–40.

    CAS  PubMed  Google Scholar 

  6. Sodhi JS, Bryson K, McGuffin LJ, Ward JJ, Wernisch L, Jones DT (2004) Predicting metal-binding site residues in low-resolution structural models J Mol Biol 342:307–320.

    Article  CAS  PubMed  Google Scholar 

  7. Passerini A, Punta M, Ceroni A, Rost B, Frasconi P (2006) Identifying cysteines and histidines in transition metal binding sites using support vector machines and neural networks Proteins: Structure, Function and Bioinformatics 65:305–316.

    Article  CAS  Google Scholar 

  8. Nair R, Rost B (2003) Better prediction of sub-cellular localization by combining evolutionary and structural information Proteins 53:917–930.

    Article  CAS  PubMed  Google Scholar 

  9. Emanuelsson O, Nielsen H, Brunak S, von Heijne, G. (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016.

    Article  CAS  PubMed  Google Scholar 

  10. Reinhardt A, Hubbard T (1998) Using neural networks for prediction of the subcellular location of proteins Nucleic Acids Res 26:2230–2236.

    Article  CAS  PubMed  Google Scholar 

  11. Jensen LJ, Gupta R, Blom N, Devos D, Tamames J, Kesmir C, Nielsen H, Staerfeldt HH, Rapacki K, Workman C, Andersen CA, Knudsen S, Krogh A, Valencia A, Brunak S (2002) Prediction of human protein function from post-translational modifications and localization features. J Mol Biol 319:1257–1265.

    Article  CAS  PubMed  Google Scholar 

  12. Wu CH (1997) Artificial neural networks for molecular sequence analysis Comput Chem 21:237–256.

    Article  CAS  PubMed  Google Scholar 

  13. Creighton TE (1993) Proteins: structure and molecular properties. W.H. Freeman, New York.

    Google Scholar 

  14. Dunker AK, Brown CJ, Lawson JD, Iakoucheva LM, Obradovic Z (2002) Intrinsic disorder and protein function Biochemistry. 41:6573–6582.

    Article  CAS  PubMed  Google Scholar 

  15. Dunker AK, Cortese MS, Romero P, Iakoucheva LM, Uversky VN (2005) Flexible nets. The roles of intrinsic disorder in protein interaction networks Febs J 272:5129–5148.

    Article  CAS  PubMed  Google Scholar 

  16. Soto C, Estrada L, Castilla J (2006) Amyloids, prions and the inherent infectious nature of misfolded protein aggregates Trends Biochem Sci 31:150–155.

    Article  CAS  PubMed  Google Scholar 

  17. Carugo O, Argos P (1997) Protein-protein crystal-packing contacts Protein Sci 6:2261–2263.

    Article  CAS  PubMed  Google Scholar 

  18. Snyder DA, Bhattacharya A, Huang YJ, Montelione GT (2005) Assessing precision and accuracy of protein structures derived from NMR data Proteins 59:655–661.

    Article  CAS  PubMed  Google Scholar 

  19. Brenner SE (2001) A tour of structural genomics Nat Rev Genet 2:801–809.

    Article  CAS  PubMed  Google Scholar 

  20. Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM, et al.(1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Scienc. 269:496–512.

    CAS  Google Scholar 

  21. Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu D, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH, Lomas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden- Tillson H, Pfannkoch C, Rogers YH, Smith H.O (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74.

    Article  CAS  PubMed  Google Scholar 

  22. Tringe SG, Rubin EM (2005) Metagenomics: DNA sequencing of environmental samples. Nat Rev Genet 6:805–814.

    Article  CAS  PubMed  Google Scholar 

  23. Berman HM, Battistuz T, Bhat TN, Bluhm WF, Bourne PE, Burkhardt K, Feng Z, Gilliland GL, Iype L, Jain S, Fagan P, Marvin J, Padilla D, Ravichandran V, Schneider B, Thanki N, Weissig H, Westbrook JD, Zardecki C (2002) The Protein Data Bank. Acta Crystallogr D Biol Crystallogr 58:899–907.

    Article  PubMed  Google Scholar 

  24. Chandonia JM, Brenner SE (2006) The impact of structural genomics: expectations and outcomes. Science 311:347–351.

    Article  CAS  PubMed  Google Scholar 

  25. Petrey D, Honig B (2005) Protein structure prediction: inroads to biology. Mol Cell 20:811–819.

    Article  CAS  PubMed  Google Scholar 

  26. Jacobson M, Sali A (2004) Comparative protein structure modeling and its applications to drug discovery Annual Reports in Medicinal Chemistry 39:259–276.

    Article  CAS  Google Scholar 

  27. Godzik A (2003) Fold recognition methods. Methods Biochem Anal 44:525–546.

    CAS  PubMed  Google Scholar 

  28. Watson JD, Laskowski RA, Thornton JM (2005) Predicting protein function from sequence and structural data. Curr Opin Struct Biol 15:275–284.

    Article  CAS  PubMed  Google Scholar 

  29. Whisstock JC, Lesk AM (2003) Prediction of protein function from protein sequence and structure. Q Rev Biophys 36:307–340.

    Article  CAS  PubMed  Google Scholar 

  30. Boeckmann B, Bairoch A, Apweiler R, Blatter MC, Estreicher A, Gasteiger E, Martin MJ, Michoud K, O'Donovan C, Phan I, Pilbout S, Schneider M (2003) The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res 31:365–370.

    Article  CAS  PubMed  Google Scholar 

  31. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman D J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402.

    Article  CAS  PubMed  Google Scholar 

  32. Rost, B. (2003) Neural networks predict protein structure: hype or hit? In: Frasconi P (ed) Artificial intelligence and heuristic methods for bioinformatics. IOS Press, Amsterdam, pp. 34–50.

    Google Scholar 

  33. Wu CH, Apweiler R, Bairoch A, Natale DA, Barker WC, Boeckmann B, Ferro S, Gasteiger E, Huang H, Lopez R, Magrane M, Martin MJ, Mazumder R, O'Donovan C, Redaschi N, Suzek B (2006) The Universal Protein Resource (UniProt): an expanding universe of protein information. Nucleic Acids Res 34:D187–D191.

    Article  CAS  PubMed  Google Scholar 

  34. Mulder NJ, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, Bradley P, Bork P, Bucher P, Cerutti L, Copley R, Courcelle E, Das U, Durbin R, Fleischmann W, Gough J, Haft D, Harte N, Hulo N, Kahn D, Kanapin A, Krestyaninova M, Lonsdale D, Lopez R, Letunic I, Madera M, Maslen J, McDowall J, Mitchell A, Nikolskaya AN, Orchard S, Pagni M, Ponting CP, Quevillon E, Selengut J, Sigrist CJ, Silventoinen V, Studholme DJ, Vaughan R, Wu CH (2005) InterPro, progress and status in 2005. Nucleic Acids Res 33:D201–D205.

    Article  CAS  PubMed  Google Scholar 

  35. Andreeva A, Howorth D, Brenner SE, Hubbard TJ, Chothia C, Murzin AG (2004) SCOP database in 2004: refinements integrate structure and sequence family data. Nucleic Acids Res 32:D226–D229.

    Article  CAS  PubMed  Google Scholar 

  36. Pearl F, Todd A, Sillitoe I, Dibley M, Redfern O, Lewis T, Bennett C, Marsden R, Grant A, Lee D, Akpor A, Maibaum M, Harrison A, Dallman T, Reeves G, Diboun I, Addou S, Lise S, Johnston C, Sillero A, Thornton J, Orengo C (2005) The CATH Domain Structure Database and related resources Gene3D and DHS provide comprehensive domain family information for genome analysis. Nucleic Acids Res 33:D247–D251.

    Article  CAS  PubMed  Google Scholar 

  37. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29.

    Article  CAS  PubMed  Google Scholar 

  38. Li W, Jaroszewski L, Godzik A (2001) Clustering of highly homologous sequences to reduce the size of large protein databases. Bioinformatics 17:282–283.

    Article  CAS  PubMed  Google Scholar 

  39. Holm, L, Sander C (1998) Removing near-neighbour redundancy from large protein sequence collections. Bioinformatics 14:423–439.

    Article  CAS  PubMed  Google Scholar 

  40. Rost B (1999) Twilight zone of protein sequence alignments. Protein Eng 12:85–94.

    Article  CAS  PubMed  Google Scholar 

  41. Rost B, Liu J, Nair R, Wrzeszczynski KO, Ofran Y (2003) Automatic prediction of protein function. Cell Mol Life Sci 60:2637–2650.

    Article  CAS  PubMed  Google Scholar 

  42. Koh IY, Eyrich VA, Marti-Renom MA, Przybylski D, Madhusudhan MS, Eswar N, Grana O, Pazos F, Valencia A, Sali A, Rost B (2003) EVA: Evaluation of protein structure prediction servers. Nucleic Acids Res 31:3311–3315.

    Article  CAS  PubMed  Google Scholar 

  43. Sander C, Schneider R (1991) Database of homology-derived protein structures and the structural meaning of sequence alignment. Proteins 9:56–68.

    Article  CAS  PubMed  Google Scholar 

  44. Mika, S, Rost B (2003) UniqueProt: Creating representative protein sequence sets. Nucleic Acids Res 31:3789–3791.

    Article  CAS  PubMed  Google Scholar 

  45. Ramachandran GN, Ramakrishnan C, Sasisekharan V (1963) Stereochemistry of polypeptide chain configurations. J Mol Biol 7:95–99.

    Article  CAS  PubMed  Google Scholar 

  46. Dunbrack RL Jr (2006) Sequence comparison and protein structure prediction. Curr Opin Struct Biol 16:374–384.

    Article  CAS  PubMed  Google Scholar 

  47. Pollastri G, Przybylski D, Rost B, Baldi P (2002) Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles. Proteins 47:228–235.

    Article  CAS  PubMed  Google Scholar 

  48. Karchin R, Cline M, Mandel-Gutfreund Y, Karplus K (2003) Hidden Markov models that use predicted local structure for fold recognition: alphabets of backbone geometry. Proteins 51:504–514.

    Article  CAS  PubMed  Google Scholar 

  49. Chen CP, Kernytsky A, Rost B (2002) Transmembrane helix predictions revisited. Protein Sci 11:2774–2791.

    Article  CAS  PubMed  Google Scholar 

  50. Siew N, Fischer D (2003) Analysis of singleton ORFans in fully sequenced microbial genomes. Proteins 53:241–2451.

    Article  CAS  PubMed  Google Scholar 

  51. Siew N, Fischer D (2003) Twenty thousand ORFan microbial protein families for the biologist? Structure 11:7–9.

    Article  CAS  PubMed  Google Scholar 

  52. Kyrpides NC, Ouzounis CA (1998) Errors in genome reviews. Science 281:1457.

    Article  CAS  PubMed  Google Scholar 

  53. Iyer LM, Aravind L, Bork P, Hofmann K, Mushegian AR, Zhulin IB, Koonin EV (2001) Quod erat demonstrandum? The mystery of experimental validation of apparently erroneous computational analyses of protein sequences. Genome Biol 2:51.

    Article  Google Scholar 

  54. Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577–2637.

    Article  CAS  PubMed  Google Scholar 

  55. Frishman D, Argos P (1995) Knowledge-based protein secondary structure assignment. Proteins 23:566–5579.

    Article  CAS  PubMed  Google Scholar 

  56. Chou PY, Fasman GD (1974) Conformational parameters for amino acids in helical, beta-sheet, and random coil regions calculated from proteins. Biochemistry 13:211–222.

    Article  CAS  PubMed  Google Scholar 

  57. Demeler B, Zhou GW (1991) Neural network optimization for E. coli promoter prediction. Nucleic Acids Res 19:1593–1599.

    Article  CAS  PubMed  Google Scholar 

  58. Fan, K, Wang W (2003) What is the minimum number of letters required to fold a protein? J Mol Biol 328:921–926.

    Article  CAS  PubMed  Google Scholar 

  59. Wang J, Wang W (1999) A computational approach to simplifying the protein folding alphabet. Nat Struct Biol 6:1033–1038.

    Article  CAS  PubMed  Google Scholar 

  60. Chan HS (1999) Folding alphabets. Nat Struct Biol 6:994–996.

    Article  CAS  PubMed  Google Scholar 

  61. Rost B. Sander C (1993) Prediction of protein secondary structure at better than 70% accuracy. J Mol Biol 232:584–599.

    Article  CAS  PubMed  Google Scholar 

  62. Rychlewski L. Fischer D (2005) LiveBench-8: the large-scale, continuous assessment of automated protein structure prediction. Protein Sci 14:240–245.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks to Hans-Erik G. Aronson (Columbia) for computer assistance; thanks to Dariusz Przybylski (Columbia) for important discussions and very useful comments on the manuscript. This work was supported by Grants U54-GM072980 and U54 GM75026-01 from the National Institutes of Health (NIH) and Grant NIH/NLM R01-LM07329-01 from the NIH and the National Library of Medicine..

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Punta PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science + Business Media, LLC

About this protocol

Cite this protocol

Punta, M., Rost, B. (2008). Neural Networks Predict Protein Structure and Function. In: Livingstone, D.J. (eds) Artificial Neural Networks. Methods in Molecular Biology™, vol 458. Humana Press. https://doi.org/10.1007/978-1-60327-101-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-101-1_11

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-718-1

  • Online ISBN: 978-1-60327-101-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics