Skip to main content

In vivo Techniques Quantifying Blood-Brain Barrier Permeability to Small Proteins in Mice

  • Protocol
Neuropeptide Techniques

Part of the book series: Neuromethods ((NM,volume 39))

  • 670 Accesses

Abstract

The blood–brain barrier (BBB) plays a crucial regulatory role in central nervous system (CNS) function and in communication between the CNS and the periphery. In addition to lipophilic molecules, many small proteins are now known to cross the BBB. Such recognition was expedited by techniques that quantify the influx and efflux of peptides and polypeptides across the BBB of the living animal. These methods are described in this review. Their use has enhanced our knowledge of the crucial link between the CNS and the rest of the body, and this has physiological and pathological implications as well as therapeutic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Oldendorf, W. Brain uptake of radiolabeled amino acids, amines, and hexoses after arterial injection. Am. J. Physiol., 1971; 221: 16929–16939.

    Google Scholar 

  2. Rapoport, S.I. Blood-Brain Barrier in Physiology and Medicine. Raven Press, New York, 1976.

    Google Scholar 

  3. Davson, H., and Segal, M.B. Physiology of the CSF and Blood–Brain Barriers. CRC Press, Boca Raton, FL, 1996.

    Google Scholar 

  4. Begley, D.J. Peptides and the blood-brain barrier. In Handbook of Experimental Pharmacology, Physiology and Pharmacology of the Blood–Brain Barrier, Vol. 103, M.W.B. Bradbury, ed. Springler-Verlag, Berlin, 1992, pp. 151–203.

    Google Scholar 

  5. Kastin, A.J., Hahn, K., and Zadina, J.E. Regional differences in peptide degradation by rat cerebral microvessels: A novel regulatory mechanism for communication between blood and brain. Life Sci., 2001; 69: 1305–1312.

    Article  CAS  PubMed  Google Scholar 

  6. Fenstermacher, J.D. Methods for quantifying the transport of drugs across blood–brain barrier systems. Pharmacol. Ther., 1981; 14: 217–248.

    Article  CAS  PubMed  Google Scholar 

  7. Blasberg, R.G., Fenstermacher, J.D., and Patlak, C.S. Transport of à-aminoisobutyric acid across brain capillary and cellular membranes. J. Cereb. Blood Flow Metab., 1983; 3: 8–22.

    CAS  PubMed  Google Scholar 

  8. Patlak, C.S., Blasberg, R.G., and Fenstermacher, J.D. Graphical evaluation of blood-to-brain transfer constants from multiple time uptake data. J. Cereb. Blood Flow Metab., 1983; 3: 1–7.

    CAS  PubMed  Google Scholar 

  9. Kastin, A.J., Nissen, C., and Coy, D.H. Permeability of the blood–brain barrier to DSIP peptides. Pharmacol. Biochem. Behav., 1981; 15: 955–959.

    Article  CAS  PubMed  Google Scholar 

  10. Banks, W.A., Jaspan, J.B., and Kastin, A.J. Selective, physiological transport of insulin across the blood-brain barrier: Novel demonstration by species-specific radioimmunoassays. Peptides, 1997; 18: 1257–1262.

    Article  CAS  PubMed  Google Scholar 

  11. Hunter, W.M., and Greenwood, F.C. Preparation of iodine-131 labelled human growth hormone of high specific activity. Nature, 1962; 194: 495–496.

    Article  CAS  PubMed  Google Scholar 

  12. Marchalonis, J. An enzymic method for the trace iodination of immunoglobulins and other proteins. Biochem. J., 1969; 113: 299–305.

    CAS  PubMed  Google Scholar 

  13. Bolton, A.E., and Hunter, W.M. A new method for labelling protein hormones with radioiodine for use in the radioimmunoassay. J. Endocrinol., 1972; 55: xxx–xxxi.

    CAS  PubMed  Google Scholar 

  14. O’Rourke. E.C., Drummond, R.J., and Creasey, A.A. Binding of 125I-labeled recombinant βinterferon (IFN-β Ser17) to human cells. Mol. Cell. Biol., 2006; 4: 2745–2749.

    Google Scholar 

  15. Banks, W.A., and Kastin, A.J.. Opposite direction of transport across the blood–brain barrier for Tyr-MIF-1 and MIF-1: Comparison with morphine. Peptides, 1994; 15: 23–29.

    Article  CAS  PubMed  Google Scholar 

  16. Kastin, A.J., Akerstrom, V., and Pan, W. Validity of multiple-time regression analysis in measurement of tritiated and iodinated leptin crossing the blood–brain barrier: Meaningful controls. Peptides, 2001; 22: 2127–2136.

    Article  CAS  PubMed  Google Scholar 

  17. Banks, W.A., and Kastin, A.J. Peptides and the blood–brain barrier: Lipophilicity as a predictor of permeability. Brain Res. Bull., 1985; 15: 287–292.

    Article  CAS  PubMed  Google Scholar 

  18. Chikhale, E.G., Ng, K.Y., Burton, P.S., and Borchardt, R.T. Hydrogen bonding potential as a determinant of the in vitro and in situ blood–brain barrier permeability of peptides. Pharm. Res., 1994; 11: 412–419.

    Article  CAS  PubMed  Google Scholar 

  19. Egleton, R.D., and Davis, T.P. Bioavailability and transport of peptides and peptide drugs into the brain. Peptides, 1997; 18: 1431–1439.

    Article  CAS  PubMed  Google Scholar 

  20. Kastin, A.J., Pan, W., Maness, L.M., and Banks, W.A. Peptides crossing the blood–brain barrier: Some unusual observations. Brain Res., 1999; 848: 96–100.

    Article  CAS  PubMed  Google Scholar 

  21. Pan, W., Banks, W.A., and Kastin, A.J. Permeability of the blood–brain and blood-spinal cord barriers to interferons. J. Neuroimmunol., 1997; 76: 105–111.

    Article  CAS  PubMed  Google Scholar 

  22. Banks, W.A., and Kastin, A.J. Differential permeability of the blood–brain barrier to two pancreatic peptides: Insulin and amylin. Peptides, 1998; 19: 883–889.

    Article  CAS  PubMed  Google Scholar 

  23. Nonaka, N., Banks, W.A., Mizushima, H., Shioda, S., and Morley, J.E. Regional differences in PACAP transport across the blood-brain barrier in mice: A possible influence of strain, amyloid beta protein, and age. Peptides, 2002; 12: 2197–2202.

    Article  Google Scholar 

  24. Pan, W., Ding, Y., Yu, Y., Ohtaki, H., Nakamichi, T., and Kastin, A.J. Stroke upregulates TNF alpha transport across the blood–brain barrier. Exp. Neurol., 2006; 198: 222–233.

    Article  CAS  PubMed  Google Scholar 

  25. Kastin, A.J., and Pan, W. Editorial: Intranasal leptin: Blood–brain barrier bypass (BBBB) for obesity? Endocrinology, 2006; 147: 2086–2087.

    Article  CAS  PubMed  Google Scholar 

  26. Johanson, C.E. The choroid plexus–CNF nexus. In Neuroscience in Medicine, P.M. Conn, ed. Humana Press Inc., Totawa, Press, 2003, pp. 165–195.

    Chapter  Google Scholar 

  27. Plotkin, S.R., Banks, W.A., and Kastin, A.J. Comparison of saturable transport and extracellular pathways in the passage of interleukin-1 à across the blood–brain barrier. J. Neuroimmunol., 1996; 67: 41–47.

    CAS  PubMed  Google Scholar 

  28. Maness, L.M., Kastin, A.J., and Banks, W.A. Relative contributions of a CVO and the microvascular bed to delivery of blood-borne IL-1à to the brain. Am. J. Physiol., 1998; 275: E207–E212.

    CAS  PubMed  Google Scholar 

  29. Triguero. D., Buciak, J., and Pardridge, W.M. Capillary depletion method for quantification of blood–brain barrier transport of circulating peptides and plasma proteins. J. Neurochem., 1990; 54: 1882–1888.

    Article  CAS  PubMed  Google Scholar 

  30. Gutierrez, E.G., Banks, W.A., and Kastin, A.J. Murine tumor necrosis factor alpha is transported from blood to brain in the mouse. J. Neuroimmunol., 1993; 47: 169–176.

    Article  CAS  PubMed  Google Scholar 

  31. Pan, W., Vallance, K.L., and Kastin, A.J. TGF alpha and the blood–brain barrier: Accumulation in cerebral vasculature. Exp. Neurol., 1999; 160: 454–459.

    Article  CAS  PubMed  Google Scholar 

  32. Yu, C., Kastin, A.J., Ding, Y., and Pan, W. Gamma glutamyl transpeptidase is a dynamic indicator of endothelial response to stroke. Exp. Neurol., 2007; 203: 116–122.

    Article  CAS  PubMed  Google Scholar 

  33. Hoke, F. Recent advances increase HPLC use in life sciences. Scientist, 1993; 7: 18–19.

    Google Scholar 

  34. Fischman, A.J., Kastin, A.J., and Graf, M.V. HPLC shadowing: Artifacts in peptide characterization monitored by RIA. Peptides, 1984; 5: 1007–1010.

    Article  CAS  PubMed  Google Scholar 

  35. Crone, C. The permeability of capillaries of various organs as determined by the use of the “indicator diffusion” method. Acta Physiol. Scand., 1963; 58: 292–305.

    Article  CAS  PubMed  Google Scholar 

  36. Olendorf, W.H. Measurement of brain uptake of radiolabeled substances using a tritiated water internal standard. Brain Res., 1970; 24: 372–376.

    Article  Google Scholar 

  37. Kastin, A.J., Pan, W. Piptide transport across the blood-brain barrier. In Prokai, L., Prokai-Tatrai, K. eds. Piptide Transport and Delivery into the Central Nervous System, pp. 79–100. Basel, Switzerland: Birkhauser Verlag, 2003.

    Google Scholar 

  38. Pan, W., Kastin, A.J. Why study transport of peptides and proteins at the neurovascular interface. Brain Res. Rev., 2004; 46: 32–43.

    Article  CAS  PubMed  Google Scholar 

  39. Maness, L.M., Kastin, A.J., Farrell, C.L., and Banks, W.A. Fate of leptin after intracerebroventricular injection into the mouse brain. Endocrinology, 1998; 139(11): 4556–4562.

    Article  CAS  PubMed  Google Scholar 

  40. Banks, W.A., and Kastin, A.J. Quantifying carrier-mediated transport of peptides from the brain to the blood. In Methods in Enzymology, Vol. 168, P.M. Conn, ed. Academic Press, San Diego, 1998; pp. 652–660.

    Google Scholar 

  41. Banks, W.A., Kastin, A.J., Horvath, A., and Michals, E.A. Carrier-mediated transport of vasopressin across the blood-brain barrier of the mouse. J. Neurosci. Res., 1987; 18: 326–332.

    Article  CAS  PubMed  Google Scholar 

  42. Kastin, A.J., Banks, W.A., Hahn, K., and Zadina, J.E. Extreme stability of Tyr-MIF-1 in CSF. Neurosci. Lett., 1994; 174: 26–28.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc.

About this protocol

Cite this protocol

Pan, W., Kastin, A. (2008). In vivo Techniques Quantifying Blood-Brain Barrier Permeability to Small Proteins in Mice. In: Gozes, I. (eds) Neuropeptide Techniques. Neuromethods, vol 39. Humana Press. https://doi.org/10.1007/978-1-60327-099-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-099-1_8

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-468-5

  • Online ISBN: 978-1-60327-099-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics