Skip to main content

Bacteria and Yeast Cell Disruption Using Lytic Enzymes

  • Protocol
Book cover 2D PAGE: Sample Preparation and Fractionation

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 424))

Summary

Enzymatic methods provide a convenient alternative for overcoming technical disadvantages of mechanical disruption. Protocols for protein extraction from bacteria and Saccharomyces cerevisiae using lytic enzymes are presented in this chapter. Adaptation of the yeast protocol to a microtiter plate format makes this protocol amenable for proteomic applications and high-throughput screening of libraries expressing genetic variants in yeast. This methodology can also be applied to bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Koch, A.L. (1998) Orientation of the peptidoglycan chains in the sacculus of Escherichia coli. Res Microbiol 149, 689–701.

    Article  CAS  PubMed  Google Scholar 

  2. Shockman, G.D., Daneo-Moore, L., Kariyama, R. and Massidda, O. (1996) Bacterial walls, peptidoglycan hydrolases, autolysins, and autolysis Microb Drug Resist. 2, 95–98.

    Article  CAS  PubMed  Google Scholar 

  3. Ibrahim, H. R., Aoki, T. and Pellegrini, A. (2002) Strategies for new antimicrobial proteins and peptides: Lysozyme and aprotinin as model molecules. Curr. Pharm. Design 8, 671–693.

    Article  CAS  Google Scholar 

  4. Iacono, V.J., Zove, S.M., Grossbard, B.L., Pollock, J.J., Fine, D.H., Greene, L.S. (1985) Lysozyme-mediated aggregation and lysis of the periodontal microorganism Capnocytophaga gingivalis 2010. Infect Immun. 47, 457–464.

    CAS  PubMed  Google Scholar 

  5. Laible, N.J. and Germaine, G.R. (1985) Bactericidal activity of human lysozyme, muramidase-inactive lysozyme, and cationic polypeptides against Streptococcus sanguis and Streptococcus faecalis: inhibition by chitin oligosaccharides. Infect Immun.48, 720–728.

    CAS  PubMed  Google Scholar 

  6. Ibrahim, H.R., Matsuzaki, T. and Aoki, T. (2001) Genetic evidence that antibacterial activity of lysozyme is independent of its catalytic function. FEBS Lett. 506, 27–32.

    Article  CAS  PubMed  Google Scholar 

  7. Masschalck, B., Deckers, D. and Michiels, C.W. (2002) Lytic and nonlytic mechanism of inactivation of gram-positive bacteria by lysozyme under atmospheric and high hydrostatic pressure. J Food Prot. 65, 1916–1923.

    CAS  PubMed  Google Scholar 

  8. Bera, A., Herbert, S., Jakob, A., Vollmer, W., Gotz, F. (2005) Why are pathogenic staphylococci so lysozyme resistantβ The peptidoglycan O-acetyltransferase OatA is the major determinant for lysozyme resistance of Staphylococcus aureus Mol. Microbiol. 55, 778–787.

    Article  CAS  PubMed  Google Scholar 

  9. Shiba, T., Harada, S., Sugawara, H., Naitow, H., Kai Y., Satow, Y. (2000) Crystallization and preliminary X-ray analysis of a bacterial lysozyme produced by Streptomyces globisporus. Acta Crystallogr D Biol Crystallogr. 56, 1462–1463.

    Article  CAS  PubMed  Google Scholar 

  10. Rau, A., Hogg, T., Marquardt, R., Hilgenfeld, R. (2001) A new lysozyme fold. Crystal structure of the muramidase from Streptomyces coelicolor at 1.65 A resolution. J Biol Chem. 276, 31994–31999.

    Article  CAS  PubMed  Google Scholar 

  11. Hash, J.H., Rothlauf, M.V. (1967) The N,O-diacetylmuramidase of Chalaropsis species. I. Purification and crystallization. J Biol Chem. 242, 5586–5590.

    CAS  PubMed  Google Scholar 

  12. Schindler, C.A. and Schuhardt, V.T. (1964) Lysostaphin: a new bacteriolytic agent for the staphylococcus. Proc. Natl Acad. Sci. USA. 51, 414–421.

    Google Scholar 

  13. Malatesta, M.L., Heath, H.E., LeBlanc, P.A., Sloan, G.L. (1992) EGTA inhibition of DNase activity in commercial lysostaphin preparations. Biotechniques. 12, 70–72.

    CAS  PubMed  Google Scholar 

  14. Kollar, R., Petrakova, E., Ashwell, G., Robbins, P.W., Cabib, E. (1995) Architecture of the yeast cell wall. The linkage between chitin and β (1–>3)-glucan. J. Biol. Chem . 270, 1170–1178.

    Article  CAS  PubMed  Google Scholar 

  15. Lipke, P.N. and Ovalle, R. (1998) Cell wall architecture in yeast: new structure and new challenges. J. Bacteriol. 180, 3735–37340.

    CAS  PubMed  Google Scholar 

  16. Bielecki, S. and Galas, E. (1991) Microbial beta-glucanases different from cellulases. Crit. Rev. Biotechnol. 10, 275–304.

    Article  CAS  PubMed  Google Scholar 

  17. Obata, T., Fujioka, K., Hara, S. and Namba, Y. (1977) The synergistic effects among β-1, 3-glucanases from Oerskovia sp. CK on lysis of viable yeast cells. Agric. Biol. Chem. 41, 671–677.

    CAS  Google Scholar 

  18. Ventom, A.M. and Asenjo, J.A. (1990) Purification of the major glucanase of Oerskovia xanthineolytica LL-G109. Biotechnol Tech 4, 165–170.

    CAS  Google Scholar 

  19. Ventom, A.M. and Asenjo, J.A. (1991) Characterization of yeast lytic enzymes from Oerskovia xanthineolytica LL-G109. Enzyme Microbiol. Technol. 13, 71–75

    Article  CAS  Google Scholar 

  20. Ferrer, P. (2006) Revisiting the Cellulosimicrobium cellulans yeast-lytic -1,3-glucanases toolbox: A review. Microbial Cell Factories 5, 10–18.

    Article  PubMed  Google Scholar 

  21. Asenjo, J.A., Ventom, A.M., Huang, R.-B. and Andrews, B.A. (1993) Selective release of recombinant protein particles (VLPs) from yeast using a pure lytic glucanase enzyme. Bio/technol. 11, 214–217.

    Article  CAS  Google Scholar 

  22. Salazar, O., Molitor, J., Lienqueo, M.E. and Asenjo, J.A. (2001) Overproduction, purification and characterization of #x03B2;-1,3-glucanase type II in Escherichia coli Prot Expres. Purif. 23, 219–225.

    Article  CAS  Google Scholar 

  23. Shen, S.-H., Chr’tien, P., Bastien, L. and Slilaty, S.N. (1991) Primary sequence of the glucanase gene from Oerskovia xanthineolytica. J. Biol. Chem. 266, 1058–1063.

    CAS  PubMed  Google Scholar 

  24. Scott, J.H. and Scheckman, R. (1980) Lyticase: endoglucanase and protease activities that act together in yeast cell lysis J. Bacteriol. 142, 414–423.

    CAS  PubMed  Google Scholar 

  25. Salazar, O., Basso, C., Barba, P., Orellana, C. and Asenjo, J.A. (2006) Improvement of the lytic properties of a β-1,3-glucanase by directed evolution. Mol. Biotechnol. 33, 211–220.

    Article  CAS  PubMed  Google Scholar 

  26. Chassy, B.M. and Giuffrida, A. 1980. Method for the lysis of Gram-positive, asporogenous bacteria with lysozyme. Appl. Environ. Microbiol. 39, 153–158.

    CAS  PubMed  Google Scholar 

  27. Niwa T., Kawamura, Y., Katagiri, Y., Ezaki, T. (2005) Lytic enzyme, labiase for a broad range of Gram-positive bacteria and its application to analyze functional DNA/RNA. J Microbiol Methods. 61,251–260.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors would like to thank the CONICYT (Project 1030797) and the Millennium Scientific Initiative (Millennium Institutes) (ICM –P99-031) for financial support.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Salazar, O. (2008). Bacteria and Yeast Cell Disruption Using Lytic Enzymes. In: Posch, A. (eds) 2D PAGE: Sample Preparation and Fractionation. Methods in Molecular Biology™, vol 424. Humana Press. https://doi.org/10.1007/978-1-60327-064-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-064-9_2

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-722-8

  • Online ISBN: 978-1-60327-064-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics