Skip to main content

Fractionation of Proteins by Heparin Chromatography

  • Protocol
2D PAGE: Sample Preparation and Fractionation

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 424))

Summary

Heparins are negatively charged polydispersed linear polysaccharides which have the ability to bind a wide range of biomolecules including enzymes, serine protease inhibitors, growth factors, extracellular matrix proteins, DNA modification enzymes and hormone receptors. In this chromatography, heparin is not only an affinity ligand but also an ion exchanger with high charge density and distribution. Heparin chromatography is an adsorption chromatography in which biomolecules can be specifically and reversibly adsorbed by heparins immobilized on an insoluble support. An advantage of this chromatography is that heparin-binding proteins can be conveniently enriched using its concentration effect. This is especially important for separating low abundance proteins for the analysis in two-dimensional electrophoresis (2DE) or other proteomics approaches. Heparin chromatography is a powerful sample-pretreatment technology that has been widely used to fractionate proteins from extracts of prokaryotic organism or eukaryotic cells. As an example, the fractionation of fibroblast growth factors (FGFs) from the extract of mouse brain microvascular endothelial cells (MVEC) is now introduced to demonstrate the procedure of heparin chromatography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rocken, C., Ebert, M.P., Roessner, A. (2004) Proteomics in pathology, research and practice. Pathol. Res. Pract. 200, 69–82.

    Article  PubMed  Google Scholar 

  2. Betgovargez, E., Knudson, V., Simonian, M.H. (2005) Characterization of proteins in the human serum proteome. J. Biomol. Tech. 16, 306–310.

    PubMed  Google Scholar 

  3. Yuan, X., Desiderio, D.M. (2005) Proteomics analysis of prefractionated human lumbar cerebrospinal fluid. Proteomics 5, 541–550.

    Article  CAS  PubMed  Google Scholar 

  4. Jarrold, B., DeMuth, J., Greis, K., Burt, T., Wang, F. (2005) An effective skeletal muscle prefractionation method to remove abundant structural proteins for optimized two-dimensional gel electrophoresis. Electrophoresis 26, 2269–2278.

    Article  CAS  PubMed  Google Scholar 

  5. Linke, T., Ross, A.C., Harrison, E.H. (2006) Proteomic analysis of rat plasma by two-dimensional liquid chromatography and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. J. Chromatogr. A [Epub ahead of print].

    Google Scholar 

  6. Guerrera, I.C., Predic-Atkinson, J., Kleiner, O., Soskic, V., Godovac-Zimmermann, J. (2005) Enrichment of phosphoproteins for proteomic analysis using immobilized Fe(III)-affinity adsorption chromatography. J. Proteome. Res. 4, 1545–1553.

    Article  CAS  PubMed  Google Scholar 

  7. Farooqui, A.A. (1980) Purification of enzymes by heparin-sepharose affinity chromatography. J. Chromatogr. 184, 335–345.

    Article  CAS  PubMed  Google Scholar 

  8. Fountoulakis, M., Takacs, B., Langen, H. (1998) Two-dimensional map of basic proteins of Haemophilus influenzae. Electrophoresis 19, 761–766.

    Article  CAS  PubMed  Google Scholar 

  9. Karlsson, G., Winge, S. (2004) Separation of latent, prelatent, and native forms of human antithrombin by heparin affinity high-performance liquid chromatography. Protein Expr. Purif. 33, 339–345.

    Article  CAS  PubMed  Google Scholar 

  10. Staby, A., Sand, M.B., Hansen, R.G., Jacobsen, J.H., Andersen, L.A., Gerstenberg, M., et al. (2005) Comparison of chromatographic ion-exchange resins IV. Strong and weak cation-exchange resins and heparin resins. J. Chromatogr. A 1069, 65–77.

    Article  CAS  PubMed  Google Scholar 

  11. Srivastava, P.N., Farooqui, A.A. (1979) Heparin- sepharose affinity chromatography for purification of bull seminal-plasma hyaluronidase. Biochem. J. 183, 531–537.

    CAS  PubMed  Google Scholar 

  12. Iida, T., Kamo, M., Uozumi, N., Inui, T., Imai, K. (2005) Further application of a two-step heparin affinity chromatography method using divalent cations as eluents: purification and identification of membrane-bound heparin binding proteins from the mitochondrial fraction of HL-60 cells. J Chromatogr. B Analyt. Technol. Biomed. Life Sci. 823, 209–212.

    Article  CAS  PubMed  Google Scholar 

  13. Marques, M.A., Espinosa, B.J., Xavier da Silveira, E.K., Pessolani, M.C., Chapeaurouge, A., Perales, J., et al. (2004) Continued proteomic analysis of Mycobacterium leprae subcellular fractions. Proteomics 4, 2942–2953.

    Google Scholar 

  14. Faham, S., Hileman, R.E., Fromm, J.R., Linhardt, R.J., Rees, D.C. (1996) Heparin structure and interactions with basic fibroblast growth factor. Science 271, 1116–1120.

    Article  CAS  PubMed  Google Scholar 

  15. Katoh, Y., Katoh, M. (2005) Comparative genomics on FGF7, FGF10, FGF22 orthologs, and identification of fgf25. Int. J. Mol. Med. 16, 767–770.

    CAS  PubMed  Google Scholar 

  16. Shastry, S., Tyagi, N., Hayden, M.R., Tyagi, S.C. (2004) Proteomic analysis of homocysteine inhibition of microvascular endothelial cell angiogenesis. Cell. Mol. Biol. (Noisy-le-grand) 50, 931–937.

    CAS  Google Scholar 

  17. Amersham Bioscience Inc. Introduction of heparin sepharose 6 fast flow.

    Google Scholar 

  18. Audus, K.L., Borchardt, R.T. (1987) Bovine brain microvessel endothelial cell monolayers as a model system for the blood-brain barrier. Ann. N. Y. Acad. Sci. 507, 9–18.

    Article  CAS  PubMed  Google Scholar 

  19. Shastry, S., Tyagi, S.C. (2004) Homocysteine induces metalloproteinase and shedding of beta-1 integrin in microvessel endothelial cells. J. Cell. Biochem. 93, 207–213.

    Article  CAS  PubMed  Google Scholar 

  20. Shen, H., Cheng, G., Fan, H., Zhang, J., Zhang, X., Lu, H., et al. (2006) Expressed proteome analysis of human hepatocellular carcinoma in nude mice (LCI-D20) with high metastasis potential. Proteomics 6, 528–537.

    Article  CAS  PubMed  Google Scholar 

  21. Hauck, S.M., Schoeffmann, S., Deeg, C.A., Gloeckner, C.J., Swiatek-de Lange, M., Ueffing, M. (2005) Proteomic analysis of the porcine interphotoreceptor matrix. Proteomics 5, 3623–3636.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Xiong, S., Zhang, L., He, QY. (2008). Fractionation of Proteins by Heparin Chromatography. In: Posch, A. (eds) 2D PAGE: Sample Preparation and Fractionation. Methods in Molecular Biology™, vol 424. Humana Press. https://doi.org/10.1007/978-1-60327-064-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-064-9_18

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-722-8

  • Online ISBN: 978-1-60327-064-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics