Skip to main content

Structural Genomics of the Bacterial Mobile Metagenome: an Overview

  • Protocol
Structural Proteomics

Mobile gene cassettes collectively carry a highly diverse pool of novel genes, ostensibly for purposes of microbial adaptation. At the sequence level, putative functions can only be assigned to a minority of carried ORFs due to their inherent novelty. Having established these mobilized genes code for folded and functional proteins, the authors have recently adopted the procedures of structural genomics to efficiently sample their structures, thereby scoping their functional range. This chapter outlines protocols used to produce cassette-associated genes as recombinant proteins in Escherichia coli and crystallization procedures based on the dual screen/pH optimization approach of the SECSG (SouthEast Collaboratory for Structural Genomics). Crystal structures solved to date have defined unique members of enzyme fold classes associated with transport and nucleotide metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ochman, H., Lawrence, J. G., and Groisman, E. A. (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405, 299–304.

    Article  CAS  PubMed  Google Scholar 

  2. Philippe, H., and Douady, C. J. (2003) Horizontal gene transfer and phylogenetics. Curr. Opin. Microbiol. 6, 498–505.

    Article  CAS  PubMed  Google Scholar 

  3. Hall, R. M., and Stokes, H. W. (1993) Integrons: novel DNA elements which capture genes by site-specific recombination. Genetica 90, 115–132.

    Article  CAS  PubMed  Google Scholar 

  4. Stokes, H. W., Holmes, A. J., Nield, B. S., Holley, M. P., Nevalainen, K. M. H., Mabbutt, B. C., and Gillings, M. R. (2001) Gene cassette PCR: sequence-independent recovery of entire genes from environmental DNA.Appl. Env. Microbiol. 67, 5240–5246.

    Article  CAS  Google Scholar 

  5. Boucher, Y., Nesbε, C. L., Joss, M. J., Robinson, A., Mabbutt, B. C., Gillings, M. R., Doolittle, W. F., and Stokes, H. W. (2006) Recovery and evolutionary analysis of complete integron gene cassette arrays from Vibrio. BMC Evol. Biol. 6, 3.

    Article  PubMed  Google Scholar 

  6. Holmes, A. J., Gillings, M. R., Nield, B. S., Mabbutt, B. C., Nevalainen, K. M. H., and Stokes, H. W. (2003) The gene cassette metagenome is a basic resource for bacterial genome evolution. Environ. Microbiol. 5, 383–394.

    Article  CAS  PubMed  Google Scholar 

  7. Nield, B. S., Willows, R. D., Torda, A. E., Gillings, M. R., Holmes, A. J., Nevalainen, K. M. H., Stokes, H. W., and Mabbutt, B. C. (2004) New enzymes from environmental cassette arrays: functional attributes of a phosphotransferase and a RNA-methyltransferase. Protein Sci. 13, 1651–1659.

    Article  CAS  PubMed  Google Scholar 

  8. Bendtsen, J. D., Nielsen, H., von Heijne, G., and Brunak, S. (2004) Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 340, 783–795.

    Article  PubMed  Google Scholar 

  9. Cserzo, M., Wallin, E., Simon, I., von Heijne, G., and Elofsson, A. (1997) Prediction of transmembrane alpha-helices in prokaryotic membrane proteins: the dense alignment surface method. Protein Eng. 10, 673–676.

    Article  CAS  PubMed  Google Scholar 

  10. Krogh, A., Larsson, B., von Heijne, G., and Sonnhammer, E. L. (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305, 567–580.

    Article  CAS  PubMed  Google Scholar 

  11. Tusnady, G. E., and Simon, I. (1998) Principles governing amino acid composition of integral membrane proteins: application to topology prediction. J. Mol. Biol. 283, 489–506.

    Article  CAS  PubMed  Google Scholar 

  12. Linding, R., Russell, R. B., Neduva, V., and Gibson, T. J. (2003) GlobPlot: Exploring protein sequences for globularity and disorder. Nucleic Acids Res. 31, 3701–3708.

    Article  CAS  PubMed  Google Scholar 

  13. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. J. Mol. Biol. 215, 403–410.

    CAS  PubMed  Google Scholar 

  14. Shah, A. K., Liu, Z. J., Stewart, P. D., Schubot, F. D., Rose, J. P., Newton, M. G., and Wang, B. C. (2005) On increasing protein-crystallization throughput for X-ray diffraction studies. Acta Crystallogr. D. 61, 123–129.

    Article  PubMed  Google Scholar 

  15. Holm, L., and Sander, C. (1993) Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123–138.

    Article  CAS  PubMed  Google Scholar 

  16. Robinson, A., Wu, P. S.-C., Harrop, S. J., Schaeffer, P. M., Dosztányi, Z., Gillings, M. R., Holmes, A. J., Nevalainen, K. M. H., Stokes, H. W., Otting, G., Dixon, N. E., Curmi, P. M. G., and Mabbutt, B. C. (2005) Integron-associated mobile gene cassettes code for folded proteins: the structure of Bal32a, a new member of the adaptable α+β barrel family. J. Mol. Biol. 346, 1229–1241.

    Article  CAS  PubMed  Google Scholar 

  17. Robinson, A., Guilfoyle, A. P., Harrop, S. J., Boucher, Y., Stokes, H. W., Curmi, P. M. G., and Mabbutt, B. C. (2007) A putative house-cleaning enzyme encoded within an integron array: 1.8 Å crystal structure defines a new MazG subtype. Molecular Microbiol., in press.

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to Moreland Gibbs, Robert Willows, Anwar Sunna, and Meghna Sobti for useful discussions and provision of materials. This work was funded by the Australian Research Council (Discovery scheme), the National Health and Medical Research Council, and Macquarie University. AR acknowledges receipt of a RAACE (Macquarie University) postgraduate scholarship.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Robinson, A. et al. (2008). Structural Genomics of the Bacterial Mobile Metagenome: an Overview. In: Kobe, B., Guss, M., Huber, T. (eds) Structural Proteomics. Methods in Molecular Biology™, vol 426. Humana Press. https://doi.org/10.1007/978-1-60327-058-8_39

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-058-8_39

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-809-6

  • Online ISBN: 978-1-60327-058-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics