Skip to main content

High Throughput Protein Production and Crystallization at NYSGXRC

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 426))

Phase II of the Protein Structure Initiative, funded by the NIH NIGMS (National Institute of General Medical Sciences), is a 5-year effort to determine thousands of protein structures. The New York SGX Research Center for Structural Genomics (NYSGXRC) is one of the four large-scale production centers tasked with determining 100–200 structures annually. Almost all protein production is carried out using the high throughput structural biology platform at SGX Pharmaceuticals (SGX), which supplies 120 or more ultrapure proteins per month for NYSGXRC crystallization and structure determination activities. Protocols for PCR, cloning, expression/solubility testing, fermentation, purification, and crystallization are described. General protocols and detailed experimental results for each target are updated weekly at the public PepcDB website (pepcdb.pdb.org/), and all NYSGXRC clones should be available in 2008 through the PlasmID resource operated by the Harvard Institute of Proteomics.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

Reference

  1. Bonanno, J. B., Almo, S. C., Bresnick, A., Chance, M. R., Fiser, A., Swaminathan, S., Jiang, J., Studier, F. W., Shapiro, L., Lima, C. D., Gaasterland, T. M., Sali, A., Bain, K., Feil, I., Gao, X., Lorimer, D., Ramos, A., Sauder, J. M., Wasserman, S. R., Emtage, S., D'Amico, K. L., and Burley, S. K. (2005) New York-Structural GenomiX Research Consortium (NYSGXRC): a large scale center for the protein structure initiative. J. Struct. Funct. Genom. 6, 225–232.

    Article  CAS  Google Scholar 

  2. Gerlt, J. A., Babbitt, P. C., and Rayment, I. (2005) Divergent evolution in the enolase superfamily: the interplay of mechanism and specificity. Arch. Biochem. Biophys. 433, 59–70.

    Article  CAS  PubMed  Google Scholar 

  3. Seibert, C. M., and Raushel, F. M. (2005) Structural and catalytic diversity within the amidohydrolase superfamily. Biochemistry 44, 6383–6391.

    Article  CAS  PubMed  Google Scholar 

  4. Studier, F. W., and Moffatt, B. A. (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol. Biol. 189, 113–130.

    Article  CAS  PubMed  Google Scholar 

  5. Studier, F. W., Rosenberg, A. H., Dunn, J. J., and Dubendorff, J. W. (1990) Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 185, 60–89.

    Article  CAS  PubMed  Google Scholar 

  6. Studier, F. W. (2005) Protein production by auto-induction in high density shaking cultures. Protein Expr. Purif. 41, 207–234.

    Article  CAS  PubMed  Google Scholar 

  7. Mossessova, E., and Lima, C. D. (2000) Ulp1-SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast. Mol. Cell 5, 865–876.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by the Protein Structure Initiative of the National Institute for General Medical Sciences under grant U54-GM74945. The authors thank the members of NYSGXRC for their continued efforts: the SGX informatics, protein production and crystallization teams, the SGX-CAT beamline staff at the APS, the laboratories of Steve Almo at Albert Einstein College of Medicine, S. Swaminathan at Brookhaven National Laboratory, Andrej Sali at University of California San Francisco, and Mark Chance at Case Western Reserve University.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Sauder, M.J. et al. (2008). High Throughput Protein Production and Crystallization at NYSGXRC. In: Kobe, B., Guss, M., Huber, T. (eds) Structural Proteomics. Methods in Molecular Biology™, vol 426. Humana Press. https://doi.org/10.1007/978-1-60327-058-8_37

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-058-8_37

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-809-6

  • Online ISBN: 978-1-60327-058-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics