Skip to main content

Structural Genomics of Minimal Organisms: Pipeline and Results

  • Protocol
Structural Proteomics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 426))

The initial objective of the Berkeley Structural Genomics Center was to obtain a near complete three-dimensional (3D) structural information of all soluble proteins of two minimal organisms, closely related pathogens Mycoplasma genitalium and M. pneumoniae. The former has fewer than 500 genes and the latter has fewer than 700 genes. A semiautomated structural genomics pipeline was set up from target selection, cloning, expression, purification, and ultimately structural determination. At the time of this writing, structural information of more than 93% of all soluble proteins of M. genitalium is avail able. This chapter summarizes the approaches taken by the authors' center.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., and Bourne, P. E. (2000) The Protein Data Bank. Nucleic Acids Res. 28, 235–242.

    Article  CAS  PubMed  Google Scholar 

  2. Hou, J., Sims, G. E., Zhang, C., and Kim, S. -H. (2003) A global representation of the protein fold space. Proc. Natl. Acad. Sci. USA 100, 2386–2390.

    Article  CAS  PubMed  Google Scholar 

  3. Hou, J., Jun, S.-R., Zhang, C., and Kim, S.-H. (2005). Global mapping of the protein structure space and application in structure-based inference of protein function. Proc. Natl. Acad. Sci. U.S.A. 102, 3651–3656.

    Article  CAS  PubMed  Google Scholar 

  4. Himmelreich, R., Hilbert, H., Plagens, H., Pirkl, E., Li, B. C., and Herrmann, R. (1996) Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae. Nucleic Acids Res. 24, 4420–4449.

    Article  CAS  PubMed  Google Scholar 

  5. Chen, L., Oughtred, R., Berman, H. M., and Westbrook, J. (2004) TargetDB: a target registration database for structural genomics projects. Bioinformatics 20, 2860–2862.

    Article  CAS  PubMed  Google Scholar 

  6. Boeckmann, B., Bairoch, A., Apweiler, R., Blatter, M. C., Estreicher, A., Gasteiger, E., Martin, M. J., Michoud, K., O'Donovan, C., Phan, I., Pilbout, S., and Schneider, M. (2003) The SWISS-PROT protein knowledge base and its supplement TrEMBL in 2003. Nucleic Acids Res. 31, 365–370.

    Article  CAS  PubMed  Google Scholar 

  7. Wootton, J. C. (1994) Nonglobular domains in protein sequences: automated segmentation using complexity measures. Comput. Chem. 18, 269–285.

    Article  CAS  PubMed  Google Scholar 

  8. Jones, D. T., and Swindells, M. B. (2002) Getting the most from PSI—BLAST. Trends Biochem. Sci. 27, 161–164.

    Article  CAS  PubMed  Google Scholar 

  9. Schaffer, A. A., Aravind, L., Madden, T. L., Shavirin, S., Spouge, J. L., Wolf, Y. I., Koonin, E. V., and Altschul, S. F. (2001) Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements. Nucleic Acids Res. 29, 2994–3005.

    Article  CAS  PubMed  Google Scholar 

  10. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search program. Nucleic Acids Res. 25, 3389–3402.

    Article  CAS  PubMed  Google Scholar 

  11. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990) Basic local alignment search tool. J. Mol. Biol. 215, 403–410.

    CAS  PubMed  Google Scholar 

  12. Bateman, A., Coin, L., Durbin, R., Finn, R. D., Hollich, V., Griffiths-Jones, S., Khanna, A., Marshall, M., Moxon, S., Sonnhammer, E. L., Studholme, D. J., Yeats, C., and Eddy, S. R. (2004) The Pfam protein families database. Nucleic Acids Res. 32, D138–141.

    Article  CAS  PubMed  Google Scholar 

  13. Eddy, S. R. (1998) Profile hidden Markov models. Bioinformatics 14, 755–763.

    Article  CAS  PubMed  Google Scholar 

  14. Lupas, A. (1996) Prediction and analysis of coiled-coil structures. Methods Enzymol. 266, 513–525.

    Article  CAS  PubMed  Google Scholar 

  15. Krogh, A., Larsson, B., von Heijne, G., and Sonnhammer, E. L. (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305, 567–580.

    Article  CAS  PubMed  Google Scholar 

  16. Rost, B., Casadio, R., Fariselli, P., and Sander, C. (1995) Transmembrane helices predicted at 95% accuracy. Protein Sci. 4, 521–533.

    Article  CAS  PubMed  Google Scholar 

  17. Chandonia, J. M., Kim, S. H., and Brenner, S. E. (2005) Target selection and deselection at the Berkeley Structural Genomics Center. Proteins 62, 356–370.

    Article  Google Scholar 

  18. Aslanidis, C., and De Jong, P. J. (1990). Ligation-independent cloning of PCR products (LIC-PCR). Nucleic Acids Res. 20, 6069–6074.

    Article  Google Scholar 

  19. Studier, W. (2005) Protein production by auto-induction in high density shaking cultures. Protein Expr. Purif. 41, 207–234.

    Article  CAS  PubMed  Google Scholar 

  20. Nguyen, H., Martinez, B., Oganesyan, N., and Kim, R. (2004) An automated small-scale protein expression and purification screening provides beneficial information for protein production. J. Struct. Funct. Genom. 5, 23–27.

    Article  CAS  Google Scholar 

  21. Sachdev, D., and Chirgwin, J. M. (1998) Solubility of proteins isolated from inclusion bodies is enhanced by fusion to maltose-binding protein or thioredoxin. Protein Express. Purif. 12, 122–132.

    Article  CAS  Google Scholar 

  22. Harrison, S. C. (2004) Whither structural biology? Nat. Struct. Mol. Biol. 11, 12–15.

    Article  CAS  PubMed  Google Scholar 

  23. Kempf, B., and Bremer, E. (1998) Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch. Microbiol. 170, 319–330.

    Article  CAS  PubMed  Google Scholar 

  24. Bukau, B., and Horwich, A. L. (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92, 351–366.

    Article  CAS  PubMed  Google Scholar 

  25. Chen, J., Acton, T. B., Basu, S. K., Montelione, G. T., and Inouye, M. (2002) Enhancement of the solubility of proteins overexpressed in Escherichia coli by heat shock. J. Mol. Microbiol. Biotech. 4, 519–524.

    CAS  Google Scholar 

  26. Samuel D., Kumar, T. K., Ganesh, G., Jayaraman, G., Yang, P. W., Chang, M. M., Trivedi, V. D., Wang, S. L., Hwang, K. C., and Chang, D. K., and Yu, C. (2000) Proline inhibits aggregation during protein refolding. Protein Sci. 9, 344–352.

    Article  CAS  PubMed  Google Scholar 

  27. Yang, D. S., Yip, C. M., Huang, T. H., Chakrabartty, A., and Fraser, P. E. (1999) Manipulating the amyloid-beta aggregation pathway with chemical chaperones. J. Biol. Chem. 274, 32970–32974.

    Article  CAS  PubMed  Google Scholar 

  28. Voziyan, P. A., and Fisher, M. T. (2000) Chaperonin-assisted folding of glutamine synthetase under nonpermissive conditions: off-pathway aggregation propensity does not determine the co-chaperonin requirement. Protein Sci. 9, 2405–2412.

    Article  CAS  PubMed  Google Scholar 

  29. Diamant, S., Eliahu, N., Rosenthal, D., and Goloubinoff, P. (2001) Chemical chaperones regulate molecular chaperones in vitro and in cells under combined salt and heat stresses. J. Biol. Chem. 276, 39586–39591.

    Article  CAS  PubMed  Google Scholar 

  30. Oganesyan, N., Ankoudinova, I., Kim, S.-H., and Kim, R. (2007) Effect of osmotic stress and heat shock in recombinant protein overexpression and crystallization. Protein Express. Purif. 52(2), 280–285.

    Article  CAS  Google Scholar 

  31. Das, D., Oganesyan, N., Yokota, H., Pufan, R., Kim, R., and Kim, S.-H. (2004) Crystal structure of the conserved hypothetical protein MPN330 (GI: 1674200) from Mycoplasma pneumoniae. Proteins Struc. Func. Bioinf. 58, 504–508.

    Article  Google Scholar 

  32. Oganesyan, N., Kim, S.—H., and Kim, R. (2004) On-column chemical refolding of proteins. PharmaGenomics 4, 22–26.

    CAS  Google Scholar 

  33. Rozema, D., and Gellman, S.H. (1996) Artificial chaperone-assisted refolding of denatured-renatured lysozyme: modulation of the competition between renaturation and aggregation. Biochemistry 35, 15760–15771.

    Article  CAS  PubMed  Google Scholar 

  34. Daugherty, D. L., Rozema, D., Hanson, P. E., and Gellman, S. H. (1998) Artificial chaperone-assisted refolding of citrate synthase. J. Biol. Chem. 273, 33961–33971.

    Article  CAS  PubMed  Google Scholar 

  35. Lepre, C. A., and Moore, J. M. (1998) Microdrop screening: A rapid method to optimize solvent conditions for NMR spectroscopy of proteins. J. Biomol. NMR 12, 493–499.

    Article  CAS  PubMed  Google Scholar 

  36. Jancarik, J., Pufan, R., Hong, C., Kim, R., Kim, S.—H. (2004) Optimum Solubility (OS) Screening: an efficient method to optimize buffer conditions for homogeneity and crystallization of proteins. Acta Cryst. D60, 1670–1673.

    CAS  Google Scholar 

  37. Jancarik, J. and Kim, S. H. (1991) Sparse matrix sampling: a screening method for crystallization of proteins. J. Appl. Cryst. 2, 409–411.

    Article  Google Scholar 

  38. Grosse-Kunstleve, R. W., and Adams, P. D. (2003) Substructure search procedures for macromolecular structures. Acta Cryst. D59, 1966–1973.

    CAS  Google Scholar 

  39. Terwilliger, T. C., and Berendzen, J. (1999) Automated MAD and MIR structure solution. Acta Crystallogr. D Biol. Crystallogr. 55, 849–861.

    Article  CAS  PubMed  Google Scholar 

  40. Collaborative Computational Project, Number 4 (1994) The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763.

    Article  Google Scholar 

  41. Brunger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., GrosseKunstleve, R. W., Jiang, J. S., Kuszewski, J., Nilges, M., Pannu, N. S., Read, R. J., Rice, L. M., Simonson, T., and Warren, G. L. (1998) Crystallography' & NMR system: a new software suite for macromolecular structure determination. Acta Cryst. D54, 905–921.

    CAS  Google Scholar 

  42. de La Fortelle, E., and Bricogne, G. (1997) Maximum-likelihood heavy-atom parameter refinement in the MIR and MAD methods. Methods Enzymol. 276, 472–494.

    Article  Google Scholar 

  43. Cowtan, K. (1999) Error estimation and bias correction in phase-improvement calculations. Acta Cryst. D55, 1555–1567.

    CAS  Google Scholar 

  44. Terwilliger, T. C. (2000) Maximum likelihood density modification. Acta Cryst. D56, 965–972.

    CAS  Google Scholar 

  45. Perrakis, A., Morris, R., and Lamzin, V. S. (1999) Automated protein model building combined with iterative structure refinement. Nat. Struct. Biol. 6, 458–463.

    Article  CAS  PubMed  Google Scholar 

  46. Murshudov, G. N., Vagin, A. A., and Dodson, E. J. (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Cryst. D53, 240–255.

    CAS  Google Scholar 

  47. Kim, S. H., Shin, D. H., Choi, I. G., Schulze-Gahmen, U., Chen, S., and Kim, R. (2003) Structure-based functional inference in structural genomics. J. Struct. Funct. Genom. 4, 129–135.

    Article  CAS  Google Scholar 

  48. Kim, S.-H., Shin, D. H., Liu, J., Oganesyan, V., Chen, S., Xu, Q. S., Kim, J.-S., Das, D., Schulze-Gahmen, U., Holbrook, S. R., Holbrook, E. L., Martinez, B. A., Oganesyan, N., DeGiovanni, A., Lou, Y., Henriquez, M., Huang, C., Jancarik, J., Pufan, R., Choi, I.-C., Chandonia, J.-M., Hou, J., Gold, B., Yokota, H., Brenner, S. E., Adams, P. A., and Kim, R. (2005) Structural genomics of minimal organisms and protein fold space. J. Struct. Funct. Genomics. 6, 63–70.

    Article  CAS  PubMed  Google Scholar 

  49. Murzin, A. G., Brenner, S. E., Hubbard, T., and Chothia, C. (1995) SCOP: a structural classification of proteins database for the investigation of sequences and structures. J. Mol. Biol. 247, 536–540.

    CAS  PubMed  Google Scholar 

  50. Chandonia, J. M., and Kim, S. H. (2006) Structural proteomics of minimal organisms: conservation of protein fold usage and evolutionary implications BMC Struct. Biol. 6, 7–22.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by grants from the NIH (1-P50-GM62412 and 1-R01-GM073109). The authors are grateful to a large number of colleagues who participated in various aspects of BSGC's PSI-1 program, such as high throughput cloning (H. Yokota and B. Gold) and expression (M. Henriquez and B. Martinez), large-scale production and characterization of proteins (C. Huang, Y. Lou, N. Oganesyan, and A. DeGiovanni), crystallization (J. Jancarik, I. Ankoudinova, and H. Hyun) and structure determination (D. Das, J. Liu, V. Oganesyan, and Q. Xian), and structural space mapping (S. Jun, G. Sims, J. Hou, and I.-G. Choi), with the guidance of S. Brenner, D. Wemmer, T. Earnest, D. McKay, and C. Hutchison, Jr.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kim, SH., Shin, DH., Kim, R., Adams, P., Chandonia, JM. (2008). Structural Genomics of Minimal Organisms: Pipeline and Results. In: Kobe, B., Guss, M., Huber, T. (eds) Structural Proteomics. Methods in Molecular Biology™, vol 426. Humana Press. https://doi.org/10.1007/978-1-60327-058-8_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-058-8_32

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-809-6

  • Online ISBN: 978-1-60327-058-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics