Skip to main content

A General Target Selection Method for Crystallographic Proteomics

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 426))

Increasing the success in obtaining structures and maximizing the value of the structures determined are the two major goals of target selection in structural proteomics. This chapter presents an efficient and flexible target selection procedure supplemented with a Web-based resource that is suitable for small- to large-scale structural genomics projects that use crystallography as the major means of structure determination. Based on three criteria, biological significance, structural novelty, and “crystallizability,” the approach first removes (filters) targets that do not meet minimal criteria and then ranks the remaining targets based on their “crystallizability” estimates. This novel procedure was designed to maximize selection efficiency, and its prevailing criteria categories make it suitable for a broad range of structural proteomics projects.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Berry, I. M., Dym, O., Esnouf, R. M., Harlos, K., Meged, R., Perrakis, A., Sussman, J. L., Walter, T. S., Wilson, J., and Messerschmidt, A. (2006) SPINE high- throughput crystallization, crystal imaging and recognition techniques: current state, performance analysis, new technologies and future aspects. Acta Crystallogr. D Biol. Crystallogr. 62, 1137–1149.

    Article  PubMed  Google Scholar 

  2. Bonanno, J. B., Almo, S. C., Bresnick, A., Chance, M. R., Fiser, A., Swaminathan, S., Jiang, J., Studier, F. W., Shapiro, L., Lima, C. D., Gaasterland, T. M., Sali, A., Bain, K., Feil, I., Gao, X., Lorimer, D., Ramos, A., Sauder, J. M., Wasserman, S. R., Emtage, S., D'Amico, K. L., and Burley, S. K. (2005) New York-Structural GenomiX Research Consortium (NYSGXRC): a large scale center for the protein structure initiative. J. Struct. Funct. Genomics 6, 225–232.

    Article  CAS  PubMed  Google Scholar 

  3. Busso, D., Poussin-Courmontagne, P., Rose, D., Ripp, R., Litt, A., Thierry, J. C., and Moras, D. (2005) Structural genomics of eukaryotic targets at a laboratory scale. J. Struct. Funct. Genom. 6, 81–88.

    Article  CAS  Google Scholar 

  4. Lundstrom, K., Wagner, R., Reinhart, C., Desmyter, A., Cherouati, N., Magnin, T., Zeder-Lutz, G., Courtot, M., Prual, C., Andre, N., Hassaine, G., Michel, H., Cambillau, C., and Pattus, F. (2006) Structural genomics on membrane proteins: comparison of more than 100 GPCRs in 3 expression systems. J. Struct. Funct. Genom. Vo l 7, Numb 2, pp. 77–91(15).

    Article  CAS  Google Scholar 

  5. Moreland, N., Ashton, R., Baker, H. M., Ivanovic, I., Patterson, S., Arcus, V. L., Baker, E. N., and Lott, J. S. (2005) A flexible and economical medium- throughput strategy for protein production and crystallization. Acta. Crystallogr. D Biol. Crystallogr. 61, 1378–1385.

    Article  PubMed  Google Scholar 

  6. Su, X. D., Liang, Y., Li, L., Nan, J., Brostromer, E., Liu, P., Dong, Y., and Xian, D. (2006) A large-scale, high-efficiency and low-cost platform for structural genomics studies. Acta Crystallogr. D Biol. Crystallogr. 62, 843–851.

    Article  PubMed  Google Scholar 

  7. Canaves, J. M., Page, R., Wilson, I. A., and Stevens, R. C. (2004) Protein biophysical properties that correlate with crystallization success in Thermotoga maritima: maximum clustering strategy for structural genomics. J. Mol. Biol. 344, 977–991.

    Article  CAS  PubMed  Google Scholar 

  8. Goh, C. S., Lan, N., Douglas, S. M., Wu, B., Echols, N., Smith, A., Milburn, D., Montelione, G. T., Zhao, H., and Gerstein, M. (2004) Mining the structural genomics pipeline: identification of protein properties that affect high-throughput experimental analysis. J. Mol. Biol. 336, 115–130.

    Article  CAS  PubMed  Google Scholar 

  9. Rupp, B., and Wang, J. (2004) Predictive models for protein crystallization. Methods 34, 390–407.

    Article  CAS  PubMed  Google Scholar 

  10. Smialowski, P., Schmidt, T., Cox, J., Kirschner, A., and Frishman, D. (2006) Will my protein crystallize? A sequence-based predictor. Proteins 62, 343–355.

    Article  CAS  PubMed  Google Scholar 

  11. Homma, K., Kikuno, R. F., Nagase, T., Ohara, O., and Nishikawa, K. (2004) Alternative splice variants encoding unstable protein domains exist in the human brain. J. Mol. Biol. 343, 1207–1220.

    Article  CAS  PubMed  Google Scholar 

  12. Stamm, S., Ben-Ari, S., Rafalska, I., Tang, Y., Zhang, Z., Toiber, D., Thanaraj, T. A., and Soreq, H. (2005) Function of alternative splicing. Gene 344, 1–20.

    Article  CAS  PubMed  Google Scholar 

  13. Takeda, J., Suzuki, Y., Nakao, M., Barrero, R. A., Koyanagi, K. O., Jin, L., Motono, C., Hata, H., Isogai, T., Nagai, K., Otsuki, T., Kuryshev, V., Shionyu, M., Yura, K., Go, M., Thierry-Mieg, J., Thierry-Mieg, D., Wiemann, S., Nomura, N., Sugano, S., Gojobori, T., and Imanishi, T. (2006) Large-scale identification and characterization of alternative splicing variants of human gene transcripts using 56,419 completely sequenced and manually annotated full-length cDNAs. Nucleic Acids Res. 34, 3917–3928.

    Article  CAS  PubMed  Google Scholar 

  14. Imanishi, T., Itoh, T., Suzuki, Y., O'Donovan, C., Fukuchi, S., Koyanagi, K. O., Barrero, R. A., Tamura, T., Yamaguchi-Kabata, Y., Tanino, M., Yura, K., Miyazaki, S., Ikeo, K., Homma, K., Kasprzyk, A., Nishikawa, T., Hirakawa, M., Thierry-Mieg, J., Thierry-Mieg, D., Ashurst, J., Jia, L., Nakao, M., Thomas, M. A., Mulder, N., Karavidopoulou, Y., Jin, L., Kim, S., Yasuda, T., Lenhard, B., Eveno, E., Suzuki, Y., Yamasaki, C., Takeda, J., Gough, C., Hilton, P., Fujii, Y., Sakai, H., Tanaka, S., Amid, C., Bellgard, M., Bonaldo Mde, F., Bono, H., Bromberg, S. K., Brookes, A. J., Bruford, E., Carninci, P., Chelala, C., Couillault, C., de Souza, S. J., Debily, M. A., Devignes, M. D., Dubchak, I., Endo, T., Estreicher, A., Eyras, E., Fukami-Kobayashi, K., Gopinath, G. R., Graudens, E., Hahn, Y., Han, M., Han, Z. G., Hanada, K., Hanaoka, H., Harada, E., Hashimoto, K., Hinz, U., Hirai, M., Hishiki, T., Hopkinson, I., Imbeaud, S., Inoko, H., Kanapin, A., Kaneko, Y., Kasukawa, T., Kelso, J., Kersey, P., Kikuno, R., Kimura, K., Korn, B., Kuryshev, V., Makalowska, I., Makino, T., Mano, S., Mariage-Samson, R., Mashima, J., Matsuda, H., Mewes, H. W., Minoshima, S., Nagai, K., Nagasaki, H., Nagata, N., Nigam, R., Ogasawara, O., Ohara, O., Ohtsubo, M., Okada, N., Okido, T., Oota, S., Ota, M., Ota, T., Otsuki, T., Piatier-Tonneau, D., Poustka, A., Ren, S. X., Saitou, N., Sakai, K., Sakamoto, S., Sakate, R., Schupp, I., Servant, F., Sherry, S., Shiba, R., Shimizu, N., Shimoyama, M., Simpson, A. J., Soares, B., Steward, C., Suwa, M., Suzuki, M., Takahashi, A., Tamiya, G., Tanaka, H., Taylor, T., Terwilliger, J. D., Unneberg, P., Veeramachaneni, V., Watanabe, S., Wilming, L., Yasuda, N., Yoo, H. S., Stodolsky, M., Makalowski, W., Go, M., Nakai, K., Takagi, T., Kanehisa, M., Sakaki, Y., Quackenbush, J., Okazaki, Y., Hayashizaki, Y., Hide, W., Chakraborty, R., Nishikawa, K., Sugawara, H., Tateno, Y., Chen, Z., Oishi, M., Tonellato, P., Apweiler, R., Okubo, K., Wagner, L., Wiemann, S., Strausberg, R. L., Isogai, T., Auffray, C., Nomura, N., Gojobori, T., and Sugano, S. (2004) Integrative annotation of 21,037 human genes validated by full-length cDNA clones. PLoS Biol. 2, e162.

    Article  PubMed  Google Scholar 

  15. Fink, J. L., Aturaliya, R. N., Davis, M. J., Zhang, F., Hanson, K., Teasdale, M. S., Kai, C., Kawai, J., Carninci, P., Hayashizaki, Y., and Teasdale, R. D. (2006) LOCATE: a mouse protein subcellular localization database. Nucleic Acids Res. 34, D213–217.

    Article  CAS  PubMed  Google Scholar 

  16. Karolchik, D., Baertsch, R., Diekhans, M., Furey, T. S., Hinrichs, A., Lu, Y. T., Roskin, K. M., Schwartz, M., Sugnet, C. W., Thomas, D. J., Weber, R. J., Haussler, D., and Kent, W. J. (2003) The UCSC Genome Browser Database Nucleic Acids Res. 31, 51–54.

    Article  CAS  PubMed  Google Scholar 

  17. Marchler-Bauer, A., Anderson, J. B., Cherukuri, P. F., DeWeese-Scott, C., Geer, L. Y., Gwadz, M., He, S., Hurwitz, D. I., Jackson, J. D., Ke, Z., Lanczycki, C. J., Liebert, C. A., Liu, C., Lu, F., Marchler, G. H., Mullokandov, M., Shoemaker, B. A., Simonyan, V., Song, J. S., Thiessen, P. A., Yamashita, R. A., Yin, J. J., Zhang, D., and Bryant, S. H. (2005) CDD: a Conserved Domain Database for protein classification. Nucleic Acids Res. 33, D192–196.

    Article  CAS  PubMed  Google Scholar 

  18. Geer, L. Y., Domrachev, M., Lipman, D. J., and Bryant, S. H. (2002) CDART: protein homology by domain architecture. Genome Res. 12, 1619–1623.

    Article  CAS  PubMed  Google Scholar 

  19. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402.

    Article  CAS  PubMed  Google Scholar 

  20. Dosztanyi, Z., Csizmok, V., Tompa, P., and Simon, I. (2005) The pairwise energy content estimated from amino acid composition discriminates between folded and intrinsically unstructured proteins. J Mol. Biol. 347, 827–839.

    Article  CAS  PubMed  Google Scholar 

  21. Dosztanyi, Z., Csizmok, V., Tompa, P., and Simon, I. (2005) IUPred: Web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 21, 3433–3434.

    Article  CAS  PubMed  Google Scholar 

  22. Linding, R., Jensen, L. J., Diella, F., Bork, P., Gibson, T. J., and Russell, R. B. (2003) Protein disorder prediction: implications for structural proteomics. Structure 11, 1453–1459.

    Article  CAS  PubMed  Google Scholar 

  23. Linding, R., Russell, R. B., Neduva, V., and Gibson, T. J. (2003) GlobPlot: exploring protein sequences for globularity and disorder Nucleic Acids Res. 31, 3701–3708.

    Article  CAS  PubMed  Google Scholar 

  24. Krogh, A., Larsson, B., von Heijne, G., and Sonnhammer, E. L. (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305, 567–580.

    Article  CAS  PubMed  Google Scholar 

  25. Bendtsen, J. D., Nielsen, H., von Heijne, G., and Brunak, S. (2004) Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 340, 783–795.

    Article  PubMed  Google Scholar 

  26. Cuff, J. A., and Barton, G. J. (2000) Application of multiple sequence alignment profiles to improve protein secondary structure prediction. Proteins 40, 502–511.

    Article  CAS  PubMed  Google Scholar 

  27. Cuff, J. A., Clamp, M. E., Siddiqui, A. S., Finlay, M., and Barton, G. J. (1998) JPred: a consensus secondary structure prediction server. Bioinformatics 14, 892–893.

    Article  CAS  PubMed  Google Scholar 

  28. Rost, B., and Liu, J. (2003) The PredictProtein server. Nucleic Acids Res. 31, 3300–3304.

    Article  CAS  PubMed  Google Scholar 

  29. Jones, D. T. (1999) Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol. 292, 195–202.

    Article  CAS  PubMed  Google Scholar 

  30. Kelley, L. A., MacCallum, R. M., and Sternberg, M. J. (2000) Enhanced genome annotation using structural profiles in the program 3D-PSSM. J. Mol. Biol. 299, 499–520.

    Article  CAS  PubMed  Google Scholar 

  31. Shi, J., Blundell, T. L., and Mizuguchi, K. (2001) FUGUE: sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties. J. Mol. Biol. 310, 243–257.

    Article  CAS  PubMed  Google Scholar 

  32. Torda, A. E., Procter, J. B., and Huber, T. (2004) Wurst: a protein threading server with a structural scoring function, sequence profiles and optimized substitution matrices. Nucleic Acids Res. 32, W532–535.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Tim Ravasi, Munish Puri, Ian Ross, Tom Alber, and all the members of the macrophage protein group for their feedback and advice. This work was supported by an Australian Research Council (ARC) grant to JLM and BK. BK is an ARC Federation Fellow and a National Health and Medical Research Council Honorary Research Fellow, and NC an Australian Synchrotron Research Program Fellow.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Robin, G. et al. (2008). A General Target Selection Method for Crystallographic Proteomics. In: Kobe, B., Guss, M., Huber, T. (eds) Structural Proteomics. Methods in Molecular Biology™, vol 426. Humana Press. https://doi.org/10.1007/978-1-60327-058-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-058-8_2

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-809-6

  • Online ISBN: 978-1-60327-058-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics