Skip to main content

Structural Proteomics of Membrane Proteins: a Survey of Published Techniques and Design of a Rational High Throughput Strategy

  • Protocol
Structural Proteomics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 426))

Approximately one third of the proteins encoded in prokaryotic and eukaryotic genomes reside in the membrane. However, membrane proteins comprise only a minute fraction of the entries in protein structural databases. This disparity is largely due to inherent difficulties in the expression and purification of sufficient quantities of membrane targets. To begin addressing the challenges of membrane protein production for high throughput structural proteomics efforts, the authors sought to develop a simple strategy that would permit the standardization of most procedures and the exploration of large numbers of proteins. Successful methods that have yielded membrane protein crystals suitable for structure determination were surveyed first. A number of recurrent trends in the expression, solubilization, purification, and crystallization techniques were identified. Based largely on these observations, a robust strategy was then developed that rapidly identifies highly expressed membrane protein targets and simplifies their production for structural studies. This method has been used to express and purify intramembrane proteases to levels sufficient for crystallization. This strategy is a paradigm for the purification of many other membrane proteins, as discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grisshammer, R., and Tate, C. G. (1995) Overexpression of integral membrane proteins for structural studies. Q. Rev. Biophys. 28, 315–422.

    Article  CAS  PubMed  Google Scholar 

  2. Loll, P. J. (2003) Membrane protein structural biology: the high throughput challenge. Journal of Structural Biology 142, 144–153.

    Article  CAS  PubMed  Google Scholar 

  3. Tate, C. G., and Grisshammer, R. (1996) Heterologous expression of G-protein-coupled receptors. Trends Biotechnol. 14, 426–430.

    Article  CAS  PubMed  Google Scholar 

  4. Wiener, M. C. (2004) A pedestrian guide to membrane protein crystallization. Methods 34, 364–372.

    Article  CAS  PubMed  Google Scholar 

  5. Selinsky, B. S. (ed.) (2003) Membrane Protein Protocols: Expression, Purification, and Characterization, Humana Press, Totowa, NJ.

    Google Scholar 

  6. Miroux, B., and Walker, J. E. (1996) Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J. Mol. Biol. 260, 289–298.

    Article  CAS  PubMed  Google Scholar 

  7. Sarramegna, V., Talmont, F., Demange, P., and Milon, A. (2003) Heterologous expression of G-protein-coupled receptors: comparison of expression systems from the standpoint of large-scale production and purification. Cell. Mol. Life Sci. 60, 1529–1546.

    Article  CAS  PubMed  Google Scholar 

  8. Tate, C. G. (2001) Overexpression of mammalian integral membrane proteins for structural studies. FEBS Lett. 504, 94–98.

    Article  CAS  PubMed  Google Scholar 

  9. Lemieux, M. J., Song, J., Kim, M. J., Huang, Y., Villa, A., Auer, M., et al. (2003) Three-dimensional crystallization of the Escherichia coli glycerol-3-phosphate transporter: a member of the major facilitator superfamily. Protein Sci. 12, 2748– 2756.

    Article  CAS  PubMed  Google Scholar 

  10. Keyes, M. H., Gray, D. N., Kreh, K. E., and Sanders, C. R. (2003) Solubilizing detergents for membrane proteins, in (Iwata, S., ed.), Methods and Results in Crystallization of Membrane Proteins, International University Line, La Jolla, CA.

    Google Scholar 

  11. Dobrovetsky, E., Lu, M. L., Andorn-Broza, R., Khutoreskaya, G., Bray, J. E., Savchenko, A., et al. (2005) High throughput production of prokaryotic membrane proteins. J. Struct. Funct. Genomics 6, 33–50.

    Article  CAS  PubMed  Google Scholar 

  12. Lunin, V., Dobrovetsky, E., Khutoreskaya, G., Rongguang, Z., Joachimiak, A., Doyle, D. A., et al. (2006) Crystal structure of the CorA Mg2+ transporter. Nature 440, 833–837.

    Article  CAS  PubMed  Google Scholar 

  13. Lemberg, M. K., Menendez, J., Misik, A., Garcia, M., Koth, C. M., and Freeman, M. (2005) Mechanism of intramembrane proteolysis investigated with purified rhomboid proteases. EMBO J. 24, 464–472.

    Article  CAS  PubMed  Google Scholar 

  14. Urban, S., Lee, J. R., and Freeman, M. (2001) Drosophila rhomboid-1 defines a family of putative intramembrane serine proteases. Cell 107, 173–182.

    Article  CAS  PubMed  Google Scholar 

  15. McQuibban, G. A., Saurya, S., and Freeman, M. (2003) Mitochondrial membrane remodelling regulated by a conserved rhomboid protease. Nature 423, 537–541.

    Article  CAS  PubMed  Google Scholar 

  16. Cipolat, S., Rudka, T., Hartmann, D., Costa, V., Serneels, L., Craessaerts, K., et al. (2006) Mitochondrial rhomboid PARL regulates cytochrome c release during apoptosis via OPA1-dependent cristae remodeling. Cell 126, 163–175.

    Article  CAS  PubMed  Google Scholar 

  17. Gallio, M., Sturgill, G., Rather, P., and Kylsten, P. (2002) A conserved mechanism for extracellular signaling in eukaryotes and prokaryotes. Proc. Natl. Acad. Sci. USA 99, 12208–12213.

    Article  CAS  PubMed  Google Scholar 

  18. Brossier, F., Jewett, T. J., Sibley, L. D., and Urban, S. (2005) A spatially localized rhomboid protease cleaves cell surface adhesins essential for invasion by Toxoplasma. Proc. Natl. Acad. Sci. USA 102, 4146–4151.

    Article  CAS  PubMed  Google Scholar 

  19. Nollert, P., Navarro, J., and Landau, E. M. (2002) Crystallization of membrane proteins in cubo. Methods Enzymol. 343, 183–199.

    Article  PubMed  Google Scholar 

  20. Nollert, P. (2004) Lipidic cubic phases as matrices for membrane protein crystallization. Methods 34, 348–353.

    Article  CAS  PubMed  Google Scholar 

  21. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., et al. (2000) The Protein Data Bank. Nucleic Acids Res. 28, 235–242.

    Article  CAS  PubMed  Google Scholar 

  22. Raman, P., Cherezov, V., and Caffrey, M. (2006) The Membrane Protein Data Bank. Cell. Mol. Life Sci. 63, 36–51.

    Article  CAS  PubMed  Google Scholar 

  23. Savchenko, A., Yee, A., Khachatryan, A., Skarina, T., Evdokimova, E., Pavlova, M., et al. (2003) Strategies for structural proteomics of prokaryotes: quantifying the advantages of studying orthologous proteins and of using both NMR and x-ray crystallography approaches. Proteins 50, 392–399.

    Article  CAS  PubMed  Google Scholar 

  24. Locher, K. P., Lee, A. T., and Rees, D. C. (2002) The E. coli BtuCD structure: a framework for ABC transporter architecture and mechanism. Science 296, 1091– 1098.

    Article  CAS  PubMed  Google Scholar 

  25. Jiang, Y., Lee, A., Chen, J., Ruta, V., Cadene, M., Chait, B. T., et al. (2003) X-ray structure of a voltage-dependent K+ channel. Nature 423, 33–41.

    Article  CAS  PubMed  Google Scholar 

  26. Chang, G., Spencer, R. H., Lee, A. T., Barclay, M. T., and Rees, D. C. (1998) Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mech-anosensitive ion channel. Science 282, 2220–2226.

    Article  CAS  PubMed  Google Scholar 

  27. Wasserman, J. D., Urban, S., and Freeman, M. (2000) A family of rhomboid-like genes: Drosophila rhomboid-1 and roughoid/rhomboid-3 cooperate to activate EGF receptor signaling. Genes Dev. 14, 1651–1663.

    CAS  PubMed  Google Scholar 

  28. Christendat, D., Yee, A., Dharamsi, A., Kluger, Y., Savchenko, A., Cort, J. R., et al. (2000) Structural proteomics of an archaeon. Nat. Struct. Biol. 7, 903–909.

    Article  CAS  PubMed  Google Scholar 

  29. Moreland, N., Ashton, R., Baker, H. M., Ivanovic, I., Patterson, S., Arcus, V. L., et al. (2005) A flexible and economical medium-throughput strategy for protein production and crystallization. Acta Crystallogr. D Biol. Crystallogr. 61, 1378–1385.

    Article  PubMed  Google Scholar 

  30. Mohanty, A. K., Simmons, C. R., and Wiener, M. C. (2003) Inhibition of tobacco etch virus protease activity by detergents. Protein Expr. Purif. 27, 109–114.

    Article  CAS  PubMed  Google Scholar 

  31. Tucker, J., and Grisshammer, R. (1996) Purification of a rat neurotensin receptor expressed in Escherichia coli. Biochem. J. 317, 891–899.

    CAS  PubMed  Google Scholar 

  32. Eshaghi, S., Hedren, M., Nasser, M. I., Hammarberg, T., Thornell, A., and Nordlund, P. (2005) An efficient strategy for high throughput expression screening of recombinant integral membrane proteins. Protein Sci. 14, 676–683.

    Article  CAS  PubMed  Google Scholar 

  33. Wang, D. N., Safferling, M., Lemieux, M. J., Griffith, H., Chen, Y., and Li, X. D. (2003) Practical aspects of overexpressing bacterial secondary membrane transporters for structural studies. Biochim. Biophys. Acta 1610, 23–36.

    Article  CAS  PubMed  Google Scholar 

  34. Hopkins, T. R. (1991) Physical and chemical cell disruption for the recovery of intracellular proteins, in (R. Seetharam, R. and Sharma, S. K., eds.), Purification and Analysis of Recombinant Proteins, Marcel Dekker, New York.

    Google Scholar 

  35. Iwata, S. (ed.) (2003) Methods and Results in Crystallization of Membrane Proteins. International University Line, La Jolla, CA.

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge many stimulating discussions with fellow researchers at Vertex Pharmaceuticals, the Ontario Centre for Structural Proteomics and the Structural Genomics Consortium. The authors are also grateful to J. Moore, A. Edwards, and D. Doyle for much advice and to M. Lemberg, J. Menendez, A. Misik, and M. Garcia for their work on Rhomboids. The authors are especially indebted to M. Freeman for the generous gift of several Rhomboid clones. C. M. K. conducted experiments on Rhomboids while at the Ontario Centre for Structural Proteomics (University of Toronto). This work was funded by Genome Canada and the Ontario Genomics Institute.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Willis, M.S., Koth, C.M. (2008). Structural Proteomics of Membrane Proteins: a Survey of Published Techniques and Design of a Rational High Throughput Strategy. In: Kobe, B., Guss, M., Huber, T. (eds) Structural Proteomics. Methods in Molecular Biology™, vol 426. Humana Press. https://doi.org/10.1007/978-1-60327-058-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-058-8_18

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-809-6

  • Online ISBN: 978-1-60327-058-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics