Skip to main content

A System for Site-Specific Genetic Manipulation of the Relapsing Fever SpirocheteBorrelia hermsii

  • Protocol
Bacterial Pathogenesis

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 431))

Summary

The lack of a system for genetic manipulation has hindered studies on the molecular pathogenesis of relapsing fever Borrelia. The focus of this chapter is to describe selectable markers, manipulation strategies, and methods to electro-transform and clone wild-type infectious Borrelia hermsii. Preliminary studies suggest that the variable tick protein (Vtp) of B. hermsii is involved in tick-to-mammal transmission. To address this hypothesis, we have developed a system for genetic manipulation and have constructed clones of a Vtp mutant and an isogenic reconstituted strain. The methods described here are applicable for the inactivation of other loci in B. hermsii and should be adaptable for other species of relapsing fever spirochetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Falkow, S. (1988) Molecular Koch's postulates applied to microbial pathogenicity. Rev. Infect. Dis. 10 Suppl. 2, S274–276.

    PubMed  Google Scholar 

  2. Dworkin, M.S., Schwan, T.G., and Anderson, D.E. (2002) Tick-borne relapsing fever in North America. Med. Clin. North Am. 86, 417–433.

    Article  PubMed  Google Scholar 

  3. Brouqui, P., Stein, A., Dupont, H.T., Gallian, P., Badiaga, S., Rolain, J.M., Mege, J.L., La Scola, B., Berbis, P., and Raoult, D. (2005) Ectoparasitism and vector-borne diseases in 930 homeless people from Marseilles. Medicine (Baltimore) 84, 61–68.

    Article  Google Scholar 

  4. Cutler, S.J. (2006) Possibilities for relapsing fever reemergence. Emerg. Infect. Dis. 12, 369–374.

    PubMed  Google Scholar 

  5. Carter, C.J., Bergström, S., Norris, S.J., and Barbour, A.G. (1994) A family of surface-exposed proteins of 20 kilodaltons in the genus Borrelia. Infect. Immun. 62, 2792–2799.

    CAS  PubMed  Google Scholar 

  6. Schwan, T.G., and Hinnebusch, B.J. (1998) Bloodstream- versus tick-associated variants of a relapsing fever bacterium. Science 280, 1938–1940.

    Article  CAS  PubMed  Google Scholar 

  7. Schwan, T.G., Piesman, J., Golde, W.T., Dolan, M.C., and Rosa, P.A. (1995) Induction of an outer surface protein on Borrelia burgdorferi during tick feeding. Proc. Natl. Acad. Sci. USA 92, 2909–2913.

    Article  CAS  PubMed  Google Scholar 

  8. Grimm, D., Tilly, K., Byram, R., Stewart, P.E., Krum, J.G., Bueschel, D.M., Schwan, T.G., Policastro, P.F., Elias, A.F., and Rosa, P.A. (2004) Outer-surface protein C of the Lyme disease spirochete: a protein induced in ticks for infection of mammals. Proc. Natl. Acad. Sci. USA 101, 3142–3147.

    Article  CAS  PubMed  Google Scholar 

  9. Pal, U., Yang, X., Chen, M., Bockenstedt, L.K., Anderson, J.F., Flavell, R.A., Norgaard, M.V., and Fikrig, E. (2004) OspC facilitates Borrelia burgdorferi invasion of Ixodes scapularis salivary glands. J. Clin. Invest. 113, 220–230.

    CAS  PubMed  Google Scholar 

  10. Tilly, K., Krum, J.G., Bestor, A., Jewett, M.W., Grimm, D., Bueschel, D., Byram, R., Dorward, D., Vanraden, M.J., Stewart, P., et al. (2006) Borrelia burgdorferi OspC protein required exclusively in a crucial early stage of mammalian infection. Infect. Immun. 74, 3554–3564.

    Article  CAS  PubMed  Google Scholar 

  11. Vieira, J., and Messing, J. (1991) New pUC-derived cloning vectors with different selectable markers and DNA replication origins. Gene 100, 189–194.

    Article  CAS  PubMed  Google Scholar 

  12. Stoenner, H.G., Dodd, T., and Larsen, C. (1982) Antigenic variation of Borrelia hermsii. J. Exp. Med. 156, 1297–1311.

    Article  CAS  PubMed  Google Scholar 

  13. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1990) Basic local alignment search tool. J. Mol. Biol. 215, 403–410.

    CAS  PubMed  Google Scholar 

  14. Stewart, P.E., Thalken, R., Bono, J.L., and Rosa, P. (2001) Isolation of a circular plasmid region sufficient for autonomous replication and transformation of infectious Borrelia burgdorferi. Mol. Microbiol. 39, 714–721.

    Article  CAS  PubMed  Google Scholar 

  15. Bono, J.L., Elias, A.F., Kupko, J.J., III, Stevenson, B., Tilly, K., and Rosa, P. (2000) Efficient targeted mutagenesis in Borrelia burgdorferi. J. Bacteriol. 182, 2445–2452.

    Article  CAS  PubMed  Google Scholar 

  16. Elias, A.F., Bono, J.L., Kupko, J.J., Stewart, P.E., Krum, J.G., and Rosa, P.A. (2003) New antibiotic resistance cassettes suitable for genetic studies in Borrelia burgdorferi. J. Mol. Microbiol. Biotechnol. 6, 29–40.

    Article  CAS  PubMed  Google Scholar 

  17. Fraser, C.M., Casjens, S., Huang, W.M., Sutton, G.G., Clayton, R., Lathigra, R., White, O., Ketchum, K.A., Dodson, R., Hickey, E.K., et al. (1997) Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 390, 580–586.

    Article  CAS  PubMed  Google Scholar 

  18. Casjens, S., Palmer, N., van Vugt, R., Huang, W.M., Stevenson, B., Rosa, P., Lathigra, R., Sutton, G., Peterson, J., Dodson, R.J., et al. (2000) A bacterial genome in flux: the twelve linear and nine circular extrachromosomal DNAs in an infectious isolate of the Lyme disease spirochete Borrelia burgdorferi. Mol. Microbiol. 35, 490–516.

    Article  CAS  PubMed  Google Scholar 

  19. Dai, Q., Restrepo, B.I., Porcella, S.F., Raffel, S.J., Schwan, T.G., and Barbour, A.G. (2006) Antigenic variation by Borrelia hermsii occurs through recombination between extragenic repetitive elements on linear plasmids. Mol. Microbiol. 60, 1329–1343.

    Article  CAS  PubMed  Google Scholar 

  20. Mullis, K., Faloona, F., Scharf, S., Saiki, R., Horn, G., and Erlich, H. (1986) Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb. Symp. Quant. Biol. 51, 263–273.

    CAS  PubMed  Google Scholar 

  21. Samuels, D.S. (1995) Electrotransformation of the spirochete Borrelia burgdorferi, in Methods in Molecular Biology (Nickoloff, J.A., ed.), Humana, Totowa, NJ, pp. 253–259.

    Google Scholar 

  22. Tilly, K., Elias, A.F., Bono, J.L., Stewart, P., and Rosa, P. (2000) DNA exchange and insertional inactivation in spirochetes. J. Mol. Microbiol. Biotechnol. 2, 433–442.

    CAS  PubMed  Google Scholar 

  23. Elias, A.F., Stewart, P.E., Grimm, D., Caimano, M.J., Eggers, C.H., Tilly, K., Bono, J.L., Akins, D.R., Radolf, J.D., Schwan, T.G., et al. (2002) Clonal polymorphism of Borrelia burgdorferi strain B31 MI: implications for mutagenesis in an infectious strain background. Infect. Immun. 70, 2139–2150.

    Article  CAS  PubMed  Google Scholar 

  24. Hinneb usch, B.J., Barbour, A.G., Restrepo, B.I., and Schwan, T.G. (1998) Population structure of the relapsing fever spirochete Borrelia hermsii as indicated by polymorphism of two multigene families that encode immunogenic outer surface lipoproteins. Infect. Immun. 66, 432–440.

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Merry Schrumpf, Kevin Lawrence, Aimee Giessler, and Gail Sylva for excellent technical assistance; Patti Rosa, Jim Bono, Abe Elias, and Philip Stewart for the generous donation of plasmid constructs and advice regarding genetic manipulation of Borrelia; Steve Porcella for assisting with B. hermsii sequences; and Mike Minnick for critical review of this text. The animal use protocol utilized in this study was approved by the Animal Care and Use Committee at the Rocky Mountain Laboratories. This work was supported by the Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Battisti, J.M., Raffel, S.J., Schwan, T.G. (2008). A System for Site-Specific Genetic Manipulation of the Relapsing Fever SpirocheteBorrelia hermsii . In: DeLeo, F.R., Otto, M. (eds) Bacterial Pathogenesis. Methods in Molecular Biology™, vol 431. Humana Press. https://doi.org/10.1007/978-1-60327-032-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-032-8_6

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-740-2

  • Online ISBN: 978-1-60327-032-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics