Skip to main content

Target-Based Antimicrobial Drug Discovery

  • Protocol
Bacterial Pathogenesis

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 431))

Summary

The continued increase in antibiotic resistance among bacterial pathogens, coupled with a decrease in infectious disease research among pharmaceutical companies, has escalated the need for novel and effective antibacterial chemotherapies. While current agents have emerged almost exclusively from whole-cell screening of natural products and small molecules that cause microbial death, recent advances in target identification and assay development have resulted in a flood of target-driven drug discovery methods. Whether genome-based methodologies will yield new classes of agents that conventional methods have been unable to is yet to be seen. At the end of the day, perhaps a synergy between old and new approaches will harvest the next generation of antibacterial treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lerner, C. G. and Beutel, B. A. (2002) Antibacterial drug discovery in the post-genomics era. Curr. Drug Targets Infect. Disord. 2, 109–119.

    Article  CAS  PubMed  Google Scholar 

  2. Miesel, L., Greene, J., and Black, T. A. (2003) Genetic Strategies for antibacterial drug discovery. Nat. Rev. Genet. 4, 442–456.

    Article  CAS  PubMed  Google Scholar 

  3. Monaghan, R. L. and Barrett, J. F. (2006) Antibacterial drug discovery–then, now and the genomics future. Biochem. Pharmacol. 71, 901–909.

    Article  CAS  PubMed  Google Scholar 

  4. Vila, J., Sanchez-Cespedes, J., and Giralt, E. (2005) Old and new strategies for the discovery of antibacterial agents. Curr. Med. Chem. Antiinfect. Agents 4, 337–353.

    Article  CAS  Google Scholar 

  5. Schmid, M. B. (2006) Do targets limit antibiotic discovery? Nat. Biotechnol. 24, 419–420.

    Article  CAS  PubMed  Google Scholar 

  6. Black, M. T. and Hodgson, J. (2005) Novel target sites in bacteria for overcoming antibiotic resistance. Adv. Drug Deliv. Rev. 57, 1528–1538.

    Article  CAS  PubMed  Google Scholar 

  7. Pucci, M. (2006) Use of genomics to select antibacterial targets. Biochem. Pharmacol. 71, 1066–1072.

    Article  CAS  PubMed  Google Scholar 

  8. Berg, C. M., Berg, D. E., and Groisman, E. A. (1989) Transposable elements and the genetic engineering of bacteria, in Mobile DNA (Berg, D. and Howe, M., eds.), American Society for Microbiology, Washington, DC., pp. 879–925.

    Google Scholar 

  9. Gerdes, S., Scholle, M., Campbell, J., et al. (2003) Experimental determination and system level analysis of essential genes in Escherichia coli MG1655. J. Bacteriol. 185, 5673–5684.

    CAS  Google Scholar 

  10. Salama, N., Shepherd, B., and Falkow, S. (2004) Global transposon mutagenesis and essential gene analysis of Helicobacter pylori. J. Bacteriol. 186, 7926–7935.

    Article  CAS  PubMed  Google Scholar 

  11. Butler, M. S. and Buss, A. D. (2006) Natural products – the future scaffolds for novel antibiotics? Biochem. Pharmacol. 71, 919–929.

    Article  CAS  PubMed  Google Scholar 

  12. Becker, D., Selbach, M., Rollenhagen, C., Ballmaier, M., Meyer, T. F., Mann, M., and Bumann, D. (2006) Robust Salmonella metabolism limits possibilities for new antimicrobials. Nature 440, 303–307.

    Article  CAS  PubMed  Google Scholar 

  13. Silver, L. (2006) Does the cell wall of bacteria remain a viable source of targets for novel antibiotics? Biochem. Pharmacol. 71, 996–1005.

    Article  CAS  PubMed  Google Scholar 

  14. Projan, S. J. (2002) New (and not so new) antibacterial targets - from where and when will the novel drugs come? Curr. Opin. Pharmacol. 2, 513–522.

    Article  CAS  PubMed  Google Scholar 

  15. Georgopapadakou, N. H. (2004) Beta-lactamase inhibitors: evolving compounds for evolving resistance targets. Expert Opin. Investig. Drugs 13, 1307–1318.

    Article  CAS  PubMed  Google Scholar 

  16. Rogers, B. L. (2004) Bacterial targets to antimicrobial leads and development candidates. Curr. Opin. Drug Discov. Dev. 7, 211–222.

    CAS  Google Scholar 

  17. Halliday, J., McKeveney, D., Muldoon, C., Rajaratnam, P. and Meutermans, W. (2006) Targeting the forgotten transglycosylases. Biochem. Pharmacol. 71, 957–967.

    Article  CAS  PubMed  Google Scholar 

  18. Silver, L. L. (2003) Novel inhibitors of bacterial cell wall synthesis. Curr. Opin. Microbiol. 6, 431–438.

    Article  CAS  PubMed  Google Scholar 

  19. Sutcliffe, J. A. (2005). Improving on nature: anti biotics that target the ribosome. Curr. Opin. Microbiol. 8, 534–542.

    Article  CAS  PubMed  Google Scholar 

  20. Alksne, L. E., Anthony, R. A., Liebman, S. W., and Warner, J. R. (1993). An accuracy center in the ribosome conserved over 2 billion years. Proc. Natl. Acad. Sci. U.S.A. 90, 9538–9541.

    Article  CAS  PubMed  Google Scholar 

  21. Franceschi, F. and Duffy, E. M. (2006) Structure-based drug design meets the ribosome. Biochem. Pharmacol. 71, 1016–1025.

    Article  CAS  PubMed  Google Scholar 

  22. Ebright, R. H. (2000) RNA polymerase: structural similarities between bacterial RNA polymerase and eukaryotic RNA polymerase II. J. Mol. Biol. 304, 687–98.

    Article  CAS  PubMed  Google Scholar 

  23. Bruck, I. and O'Donnell, M. (2000) The DNA replication machine of a gram-positive organism. J. Biol. Chem. 275, 28971–28983.

    Article  CAS  PubMed  Google Scholar 

  24. Bermingham, A. and Derrick, J. P. (2002) The folic acid biosynthesis pathway in bacteria: evaluation of potential for antibacterial drug discovery. Bioessays 24, 637–648.

    Article  CAS  PubMed  Google Scholar 

  25. Heath, R. J., White, S. W., and Rock, C. O. (2002) Inhibitors of fatty acid synthesis as antimicrobial chemotherapeutics. Appl. Microbiol. Biotechnol. 58, 695–703.

    Article  CAS  PubMed  Google Scholar 

  26. Zhao, L., Allanson, N. M., Thomson, S. P., Maclean, J. K., Barker, J. J., Primrose, W. U., Tyler, P. D., and Lewendon, A. (2003) Inhibitors of phosphopantetheine adenylyltransferase. Eur. J. Med. Chem. 38, 345–349.

    Article  CAS  PubMed  Google Scholar 

  27. Hutton, C. A., Southwood, T. J., and Turner, J. J. (2003) Inhibitors of lysine biosynthesis as antibacterial agents. Mini Rev. Med. Chem. 3, 115–127.

    Article  CAS  PubMed  Google Scholar 

  28. Gunderson, C. W. and Segall, A. M. (2006) DNA repair, a novel antibacterial target: Holliday junction-trapping peptides induce DNA damage and chromosome segregation defects. Mol. Microbiol. 59, 1129–1148.

    Article  CAS  PubMed  Google Scholar 

  29. Pohlmann, J. and Brotz-Oesterhelt, H. (2004) New aminoacyl-tRNA synthetase inhibitors as antibacterial agents. Curr. Drug Targets Infect. Disord. 4, 261–272.

    Article  CAS  PubMed  Google Scholar 

  30. Clements, J. M., Ayscough, A. P., Keavey, K., and East, S. P. (2002) Peptide deformylase inhibitors, potential for a new class of broad spectrum antibacterials. Curr. Med. Chem. Antiinfect. Agents 1, 239–249.

    Article  CAS  Google Scholar 

  31. Johnson, K. W., Lofland, D., and Moser, H. E. (2005) PDF inhibitors: an emerging class of antibacterial drugs. Curr. Drug Targets Infect. Disord. 5, 39–52.

    Article  CAS  PubMed  Google Scholar 

  32. Leeds, J. A., Schmitt, E. K., and Krastel, P. (2006) Recent developments in antibacterial drug discovery: microbe-derived natural products–from collection to the clinic. Expert Opin. Investig. Drugs 15, 211–226-2.

    Article  CAS  PubMed  Google Scholar 

  33. Alksne, L. E. and Projan, S. J. (2000) Bacterial virulence as a target for antimicrobial chemotherapy.[erratum appears in Curr. Opin. Biotechnol. 2001 Feb;12(1):112]. Curr. Opin. Biotechnol. 11, 625–636.

    Google Scholar 

  34. Otto, M. (2004) Quorum-sensing control in Staphylococci – a target for antimicrobial drug therapy? FEMS Microbiol. Lett. 241, 135–141.

    Article  CAS  PubMed  Google Scholar 

  35. Nordfelth, R., Kauppi, A. M., Norberg, H. A., Wolf-Watz, H., and Elofsson, M. (2005) Small-molecule inhibitors specifically targeting type III secretion. Infect. Immun. 73, 3104–3114.

    Article  CAS  PubMed  Google Scholar 

  36. Posner, B. A. (2005) High-throughput screening-driven lead discovery: meeting the challenges of finding new therapeutics. Curr. Opin. Drug Discov. Dev. 8, 487–494.

    CAS  Google Scholar 

  37. Goddard, J. -P. and Reymond, J. -L. (2004) Enzyme assays for high-throughput screening. Curr. Opin. Biotechnol. 15, 314–322.

    Article  CAS  PubMed  Google Scholar 

  38. Allison, R. D. (1997) Kinetic assay methods in Current Protocols in Molecular Biology, Supplement 40, Appendix 3H, John Wiley & Sons, Inc., pp. A.3H. 1–A.3H.10.

    Google Scholar 

  39. Lipinski, C. A. (2000) Drug-like properties and the causes of poor solubility and poor permeability. J. Pharmacol. Toxicol. Methods 44, 235–249.

    Article  CAS  PubMed  Google Scholar 

  40. Donadio, S., Carrano, L., Brandi, L., Serina, S., Soffientini, A., Raimondi, E., Montanini, N., Sosio, M., and Gualerzi, C. O. (2002) Targets and assays for discovering novel antibacterial agents. J. Biotechnol. 99, 175–185.

    Article  CAS  PubMed  Google Scholar 

  41. Thomson, C. J., Power, E., Ruebsamen-Waigmann, H., and Labischinski, H. (2004) Antibacterial research and development in the 21(st) Century–an industry perspective of the challenges. Curr. Opin. Microbiol. 7, 445–450.

    Article  PubMed  Google Scholar 

  42. Lundqvist, T. (2005) The devil is still in the details–driving early drug discovery forward with biophysical experimental methods. Curr. Opin. Drug Discov. Devel. 8, 513–519.

    CAS  PubMed  Google Scholar 

  43. Mills, S. D. (2006) When will the genomics investment pay off for antibacterial discovery? Biochem. Pharmacol. 71, 1096–1102.

    Article  CAS  PubMed  Google Scholar 

  44. Krumrine, J., Raubacher, F., Brooijmans, N., and Kuntz, I. (2003) Principles and methods of docking and ligand design, in Structural Bioinformatics (Weissig, H. and Bourne, P. E., eds.), Wiley, Indianapolis, IN, pp. 441–476.

    Google Scholar 

  45. Schmid, M. B. (2004) Seeing is believing: the impact of structural genomics on antimicrobial drug discovery. Nat. Rev. Microbiol. 2, 739–746.

    Article  CAS  PubMed  Google Scholar 

  46. Poole, K. (2004) Uninhibited antibiotic target discovery via chemical genetics. Nat. Biotechnol. 22, 1528–1529.

    Article  CAS  PubMed  Google Scholar 

  47. Li, X., Zolli-Juran, M., Cechetto, J. D., Daigle, D. M., Wright, G. D., and Brown, E. D. (2004) Multicopy suppressors for novel antibacterial compounds reveal targets and drug efflux susceptibility. Chem. Biol. 11, 1423–1430.

    Article  CAS  PubMed  Google Scholar 

  48. Singh, S. B. and Barrett, J. F. (2006) Empirical antibacterial drug discovery–foundation in natural products. Biochem. Pharmacol. 71, 1006–1015.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Alksne, L.E., Dunman, P.M. (2008). Target-Based Antimicrobial Drug Discovery. In: DeLeo, F.R., Otto, M. (eds) Bacterial Pathogenesis. Methods in Molecular Biology™, vol 431. Humana Press. https://doi.org/10.1007/978-1-60327-032-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-032-8_21

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-740-2

  • Online ISBN: 978-1-60327-032-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics