Skip to main content

Bioluminescent Imaging of Bacterial Biofilm Infections In Vivo

  • Protocol
Book cover Bacterial Pathogenesis

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 431))

Summary

Whole body biophotonic imaging (BPI) is a technique that has contributed significantly to the way researchers study bacterial pathogens and develop pre-clinical treatments to combat their ensuing infections in vivo. Not only does this approach allow disease profiles and drug efficacy studies to be conducted non-destructively in live animals over the entire course of the disease, but in many cases, it enables investigators to observe disease profiles that could otherwise easily be missed using conventional methodologies. The principles of this technique are that bacterial pathogens engineered to express bioluminescence (visible light) can be readily monitored from outside of the living animal using specialized low-light imaging equipment, enabling their movement, expansion and treatment to be seen completely non-invasively. Moreover, because the same group of animals can be imaged at each time-point throughout the study, the overall number of animals used is dramatically reduced, saving lives, time, and money. Also, as each animal acts as its own control over time, the issues associated with animal-to-animal variation are circumvented, thus improving the quality of the biostatistical data generated. The ability to monitor infections in vivo in a longitudinal fashion is especially appealing to assess chronic infections such as those involving implanted devices. Typically, bacteria grow as biofilms on these foreign bodies and are reputably difficult to monitor with conventional methods. Because of the non-destructive and non-invasive nature of BPI, the procedure can be performed repeatedly in the same animal, allowing the biofilm to be studied in situ without detachment or disturbance. This ability not only allows unique patterns of disease relapse to be seen following termination of antibiotic therapy but also in vivo resistance development during prolonged treatment, both of which are common occurrences with device-related infections. This chapter describes the bioluminescent engineering of both Gram-positive and Gram-negative bacteria and overviews their use in device-associated infections in several anatomical sites in a variety of animal models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Contag, C. H., Contag, P. R., Mullins, J. I., Spilman, S. D., Stevenson, D. K., and Benaron, D. A.. (1995) Photonic detection of bacterial pathogens in living hosts. Mol. Microbiol. 18, 593–603.

    Article  CAS  PubMed  Google Scholar 

  2. Burns-Guydish, S. M., Olomu, I. N., Zhao, H., Wong, R. J., Stevenson, D. K., and Contag, C. H. (2005) Monitoring age-related susceptibility of young mice to oral Salmonella enterica serovar Typhimurium infection using an in vivo murine model. Pediatr. Res. 58, 153–158.

    Article  PubMed  Google Scholar 

  3. Francis, K. P., Yu, J., Bellinger-Kawahara, C., Joh, D., Hawkinson, M. J., Xiao, G., Purchio, T. F., Caparon, M. G., Lipsitch, M., and Contag, P. R. (2001) Visualizing pneumococcal infections in the lungs of live mice using bioluminescent Streptococcus pneumoniae transformed with a novel gram-positive lux transposon. Infect. Immun. 69, 3350–3358.

    Article  CAS  PubMed  Google Scholar 

  4. Rocchetta, H. L., Boylan, C. J., Foley, J. W., Iversen, P. W., LeTourneau, D.L., McMillian, C. L., Contag, P. R., Jenkins, D. E., and Parr, T. R., Jr. (2001) Validation of a noninvasive, real-time imaging technology using bioluminescent Escherichia coli in the neutropenic mouse thigh model of infection. Antimicrob. Agents Chemother. 45, 129–137.

    Article  CAS  PubMed  Google Scholar 

  5. Francis, K. P., Joh, D., Bellinger-Kawahara, C., Hawkinson, M. J., Purchio, T. F., and Contag, P. R. (2000) Monitoring bioluminescent Staphylococcus aureus infections in living mice using a novel luxABCDE construct. Infect. Immun. 68, 3594–3600.

    Article  CAS  PubMed  Google Scholar 

  6. Orihuela, C. J., Gao, G., McGee, M., Yu, J., Francis, K. P., and Tuomanen, E. (2003) Organ-specific models of Streptococcus pneumoniae disease. Scand J Infect. Dis. 35, 647–652.

    Article  CAS  PubMed  Google Scholar 

  7. Kadurugamuwa, J. L., Sin, L., Albert, E., Yu, J., Francis, K., DeBoer, M., Rubin, M., Bellinger-Kawahara, C., Parr, T. R., Jr., and Contag, P. R. (2003) Direct continuous method for monitoring biofilm infection in a mouse model. Infect. Immun. 71, 882–890.

    Article  CAS  PubMed  Google Scholar 

  8. Kadurugamuwa, J. L., Sin, L.V., Yu, J., Francis, K. P., Kimura, R., Purchio, T., and Contag, P. R. (2003) Rapid direct method for monitoring antibiotics in a mouse model of bacterial biofilm infection. Antimicrob. Agents Chemother. 47, 3130–3137.

    Article  CAS  PubMed  Google Scholar 

  9. Kadurugamuwa, J. L., Sin, L. V., Yu, J., Francis, K. P., Purchio, T. F., and Contag, P. R. (2004) Noninvasive optical imaging method to evaluate postantibiotic effects on biofilm infection in vivo. Antimicrob. Agents Chemother. 48, 2283–2287.

    Article  CAS  PubMed  Google Scholar 

  10. Kadurugamuwa, J. L., Modi, K., Yu, J., Francis, K. P., Purchio, T., and Contag, P. R. (2005) Noninvasive biophotonic imaging for monitoring of catheter-associated urinary tract infections and therapy in mice. Infect. Immun. 73, 3878–3887.

    Article  CAS  PubMed  Google Scholar 

  11. Kuklin, N. A., Pancari, G.D., Tobery, T.W., Cope, L., Jackson, J., Gill, C., Overbye, K., Francis, K. P., Yu, J., Montgomery, D., Anderson, A. S., McClements, W., and Jansen, K. U. (2003) Real-time monitoring of bacterial infection in vivo: development of bioluminescent staphylococcal foreign-body and deep-thigh-wound mouse infection models. Antimicrob. Agents Chemother. 47, 2740–2748.

    Article  CAS  PubMed  Google Scholar 

  12. Xiong, Y. Q., Willard, J., Kadurugamuwa, J. L., Yu, J., Francis, K. P., and Bayer, A. S. (2005) Real-time in vivo bioluminescent imaging for evaluating the efficacy of antibiotics in a rat Staphylococcus aureus endocarditis model. Antimicrob. Agents Chemother. 49, 380–387.

    Article  CAS  PubMed  Google Scholar 

  13. Yu, J., Wu, J., Francis, K. P., Purchio, T. F., and Kadurugamuwa, J. L. (2005) Monitoring in vivo fitness of rifampicin-resistant Staphylococcus aureus mutants in a mouse biofilm infection model. J. Antimicrob. Chemother. 55, 528–534.

    Article  CAS  PubMed  Google Scholar 

  14. Davies, D. (2003) Understanding biofilm resistance to antibacterial agents. Nat. Rev. Drug Discov. 2, 114–122.

    Article  CAS  PubMed  Google Scholar 

  15. Mermel, L. A., Farr, B. M., Sherertz, R. J., Raad, I. I., O’Grady, N., Harris, J. S., and Craven, D. E. (2001) Guidelines for the management of intravascular catheter-related infections. Clin. Infect. Dis. 32, 1249–1272.

    Article  CAS  PubMed  Google Scholar 

  16. Winson, M. K., Swift, S., Hill, P. J., Sims, C. M., Griesmayr, G., Bycroft, B. W., Williams, P., and Stewart, G. S. (1998) Engineering the luxCDABE genes from Photorhabdus luminescens to provide a bioluminescent reporter for constitutive and promoter probe plasmids and mini-Tn5 constructs. FEMS Microbiol. Lett. 163, 193–202.

    Article  CAS  PubMed  Google Scholar 

  17. Rupp, M. E., Ulphani, J. S., Fey, P. D., Bartscht, K., and Mack, D. (1999) Characterization of the importance of polysaccharide intercellular adhesin/hemagglutinin of Staphylococcus epidermidis in the pathogenesis of biomaterial-based infection in a mouse foreign body infection model. Infect. Immun. 67, 2627–2632.

    CAS  PubMed  Google Scholar 

  18. Warren, J. W. (2001) Catheter-associated urinary tract infections. Int. J. Antimicrob. Agents 17, 299–303.

    Article  CAS  PubMed  Google Scholar 

  19. Kurosaka, Y., Ishida, Y., Yamamura, E., Takase, H., Otani, T., and Kumon, H. (2001) A non-surgical rat model of foreign body-associated urinary tract infection with Pseudomonas aeruginosa. Microbiol. Immunol. 45, 9–15.

    CAS  PubMed  Google Scholar 

  20. Dugdale, D. C. and Ramsey, P. G. (1990) Staphylococcus aureus bacteremia in patients with Hickman catheters. Am. J. Med. 89, 137–141.

    Article  Google Scholar 

  21. Rupp, M. E. and Archer, G. L. (1994) Coagulase-negative staphylococci: pathogens associated with medical progress. Clin. Infect. Dis. 19, 231–243; quiz 244–235.

    CAS  PubMed  Google Scholar 

  22. Herrero, M., de Lorenzo, V., and Timmis, K. N. (1990) Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria. J. Bacteriol. 172, 6557–6567.

    CAS  PubMed  Google Scholar 

  23. de Lorenzo, V., Herrero, M., Jakubzik, U., and Timmis, K. N. (1990) Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. J. Bacteriol. 172, 6568–6572.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kadurugamuwa, J.L., Francis, K.P. (2008). Bioluminescent Imaging of Bacterial Biofilm Infections In Vivo. In: DeLeo, F.R., Otto, M. (eds) Bacterial Pathogenesis. Methods in Molecular Biology™, vol 431. Humana Press. https://doi.org/10.1007/978-1-60327-032-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-032-8_18

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-740-2

  • Online ISBN: 978-1-60327-032-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics