Skip to main content

The Generation of Stable Oxidative Stress-Resistant Phenotypes in Chinese Hamster Fibroblasts Chronically Exposed to Hydrogen Peroxide or Hyperoxia

  • Protocol
  • First Online:
Free Radicals and Antioxidant Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 610))

Abstract

With the recognition that chronic exposure to oxidative stress occurs in many disease states and can be deleterious to the human health, great interest has emerged in understanding the mechanisms by which mammalian cells develop resistance to chronic oxidative stress. In order to study the mechanisms of development of resistance to chronic oxidative stress, a model system where Chinese hamster fibroblasts (HA1) are chronically exposed to progressively increasing concentrations of H2O2 (50–800 μM) or hyperoxia (80–95% O2) has been developed. Following >200 d of exposure to H2O2 (or 18 months of exposure to hyperoxia), the cells developed stable H2O2-resistant (or O2-resistant) phenotypes that are characterized by increases in total glutathione, antioxidant enzyme activity, heme oxygenase activity, stress protein gene expression, DNA repair pathways, and resistance to a wide variety of other toxic stress known to cause oxidant injury. In addition, these oxidant-resistant cells exhibited amplification of the gene for catalase and constitutively elevated AP-1 DNA binding activity. Further, beyond 240 d genomic instability as evidenced by chromosomal rearrangements and alterations in ploidy was stably maintained upon removal from the chronic oxidative stress conditions. These results demonstrate the capability of mammalian cells to develop stable oxidative stress-resistant phenotypes in response to both exogenous (H2O2) as well as endogenous (95% O2) oxidative stress. The understanding of mechanisms of resistance to oxidative stress and its possible relevance in various disease states are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harman, D. (1957) Aging: a theory based on free radical and radiation chemistry. J. Gerontol. 2, 298–300.

    Google Scholar 

  2. Oberley, L.W. and Buettner, G.R. (1979) Role of superoxide dismutase in cancer: a review. Cancer Res. 39, 1141–1149.

    CAS  PubMed  Google Scholar 

  3. Ames, B.N. (1983) Dietary carcinogens and anticarcinogens: oxygen radicals and degenerative diseases. Science 221, 1256–1262.

    Article  CAS  PubMed  Google Scholar 

  4. Cerutti, P.A. (1985) Prooxidant states and tumor promotion. Science 227, 375–381.

    Article  CAS  PubMed  Google Scholar 

  5. Finkel, T. and Holbrook, N.J. (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408, 239–247.

    Article  CAS  PubMed  Google Scholar 

  6. Spitz, D.R., Azzam, E.I., Li, J.J., and Gius, D. (2004) Metabolic oxidation/reduction reactions and cellular responses to ionizing radiation: a unifying concept in stress response biology. Cancer Metastasis Rev. 23, 311–322.

    Article  CAS  PubMed  Google Scholar 

  7. Spitz, D.R., Li, G.C., McCormick, M.L., Sun, Y., and Oberley, L.W. (1988) Stable H2O2-resistant variants of Chinese hamster fibroblasts demonstrate increases in catalase activity. Radiat. Res. 114, 114–124.

    Article  CAS  PubMed  Google Scholar 

  8. Spitz, D.R., Mackey, M.A., Li, G.C., Elwell, J.H., McCormick, M.L.,, and Oberley, L.W. (1989) Relationship between changes in ploidy and stable cellular resistance to hydrogen peroxide. J. Cell Physiol. 139, 592–598.

    Article  CAS  PubMed  Google Scholar 

  9. Spitz, D.R., Malcolm, R.R., and Roberts, R.J. (1990) Cytotoxicity and metabolism of 4-hydroxynonenal and 2-nonenal in H2O2-resistant cell lines: Do aldehydic by-products of lipid peroxidation contribute to oxidative stress?. Biochem. J. 267, 453–459.

    CAS  PubMed  Google Scholar 

  10. Spitz, D.R., Elwell, J.H., Sun, Y., Oberley, L.W., Oberley, T.D., Sullivan, S.J., and Roberts, R.J. (1990) Oxygen toxicity in control and H2O2-resistant Chinese hamster fibroblast cell lines. Arch. Biochem. Biophys. 279, 249–260.

    Article  CAS  PubMed  Google Scholar 

  11. Spitz, D.R., Adams, D.T., Sherman, C.M., and Roberts, R.J. (1992) Mechanisms of cellular resistance to hydrogen peroxide, hyperoxia and 4-hydroxy-2-nonenal toxicity: The significance of increased catalase activity in H2O2-resistant fibroblasts. Arch. Biochem. Biophys. 292, 221–227.

    Article  CAS  PubMed  Google Scholar 

  12. Sullivan, S.J., Oberley, T.D., Roberts, R.J., and Spitz, D.R. (1992) A stable O2-resistant cell line: Role of lipid peroxidation by-products in O2-mediated injury. Am. J. Physiol. (Lung Cell Mol. Physiol.) 262, 748–756.

    Google Scholar 

  13. Spitz, D.R., Dewey, W.C., and Li, G.C. (1987) Hydrogen peroxide or heat shock induces resistance to hydrogen peroxide in Chinese hamster fibroblasts. J. Cell. Physiol. 131, 364–373.

    Article  CAS  PubMed  Google Scholar 

  14. Spitz, D.R. and Li, G.C. (1990) Heat-induced cytotoxicity in H2O2-resistant Chinese hamster fibroblasts. J. Cell. Physiol. 142, 255–260.

    Article  CAS  PubMed  Google Scholar 

  15. Spitz, D.R., Phillips, J.W., Adams, D.T., Sherman, C.M., Deen, D.F., and Li, G.C. (1993) Cellular resistance to oxidative stress is accompanied by resistance to cisplatin: The significance of increased catalase activity and total glutathione in H2O2-resistant fibroblasts. J. Cell. Physiol. 156, 72–79.

    Article  CAS  PubMed  Google Scholar 

  16. Walker, M.W., Kinter, M.T., Roberts, R.J., and Spitz, D.R. (1995) Nitric oxide induced cytotoxicity: involvement of cellular resistance to oxidative stress and the role of glutathione in protection. Pediat. Res. 37, 41–49.

    Article  CAS  PubMed  Google Scholar 

  17. Spitz, D.R., Kinter, M.T., and Roberts, R.J. (1995) The contribution of increased glutathione content to mechanisms of oxidative stress resistance in hydrogen peroxide resistant hamster fibroblasts. J. Cell. Physiol. 165, 600–609.

    Article  CAS  PubMed  Google Scholar 

  18. Guyton, K.Z., Spitz, D.R., and Holbrook, N.J. (1996) Expression of stress response genes GADD153, c-jun, and heme oxygenase-1 in H2O2- and O2-resistant fibroblasts. Free Radic. Biol. Med. 20, 735–741.

    Article  CAS  PubMed  Google Scholar 

  19. Dennery, P.A., Wong, H.E., Sridhar, K.J., Rodgers, P., Sim, J.E., and Spitz, D.R. (1996) Differences in basal and hyperoxia associated heme oxygenase expression in oxidant resistant hamster fibroblasts. Am. J. Physiol. (Lung Cell. Mol. Physiol.) 271, 672–679.

    Google Scholar 

  20. Dennery, P.A., Sridhar, K.J., Lee, C.S., Wong, H.E., Shokoohi, V., Rodgers, P.A., and Spitz, D.R. (1997) Heme oxygenase-mediated resistance to oxygen toxicity in hamster fibroblasts. J. Biol. Chem. 272, 14937–14942.

    Article  CAS  PubMed  Google Scholar 

  21. Hunt, C.R., Sim, J.E., Featherstone, T., Golden, W., Von Kapp-Herr, C., Hock, R.A., Gomez, R.A., Parsian, A.J., and Spitz, D.R. (1998) Genomic instability and catalase gene amplification induced by chronic exposure to oxidative stress. Cancer Res. 58, 3986–3992.

    CAS  PubMed  Google Scholar 

  22. Bradbury, C.M., Locke, J.E., Wei, S.J., Rene, L.M., Karimpour, S., Hunt, C., Spitz, D.R., and Gius, D. (2001) Increased activator protein 1 activity as well as resistance to heat-induced radiosensitization, hydrogen peroxide, and cisplatin are inhibited by indomethacin in oxidative stress-resistant cells. Cancer Res. 61, 3486–3492.

    CAS  PubMed  Google Scholar 

  23. Suzuki, T., Spitz, D.R., Gandhi, P., Lin, H.Y., and Crawford, D.R. (2002) Mammalian resistance to oxidative stress: a comparative analysis. Gene Expr. 10, 179–191.

    CAS  PubMed  Google Scholar 

  24. Keightley, J.A., Shang, L., and Kinter, M. (2004) Proteomic analysis of oxidative stress resistant cells: a specific role for aldose reductase overexpression in cytoprotection. Mol. Cell Proteomics 3, 165–175.

    Google Scholar 

  25. Grishko, V.I., Rachek, L.I., Spitz, D.R., Wilson, G.L., and LeDoux, S. (2005) Contribution of mitochondrial DNA repair to cell resistance from oxidative stress. J. Biol. Chem. 280, 8901–8905.

    Article  CAS  PubMed  Google Scholar 

  26. Bojes, H.K., Suresh, P.K., Mills, E.M., Sim, J.E., Spitz, D.R., Sim, J.E., and Kehrer, J.P. (1998) Bcl-2 and Bcl-xL in peroxide resistant A549 and U87MG cells. Toxicol. Sci. 42, 109–116.

    CAS  PubMed  Google Scholar 

  27. Kasugai, I. and Yamada, M. (1992) High production of catalase in hydrogen peroxide-resistant human leukemia HL-60 cell lines. Leuk. Res. 16, 173–179.

    Article  CAS  PubMed  Google Scholar 

  28. Yamada, M., Hashinaka, K., Inazawa, J., and Abe, T. (1991) Expression of catalase and myeloperoxidase genes in hydrogen peroxide-resistant HL-60 cells. DNA Cell Biol. 10, 735–742.

    Article  CAS  PubMed  Google Scholar 

  29. Kasugai, I. and Yamada, M. (1989) Adaptation of human leukemia HL-60 cells to hydrogen peroxide as oxidative stress. Leuk. Res. 13, 757–762.

    Article  CAS  PubMed  Google Scholar 

  30. Lin, F., Jackson, V.E., and Girotti, A.W. (1995) Amplification and hyperexpression of the catalase gene in selenoperoxidase-deficient leukemia cells. Arch. Biochem. Biophys. 317, 7–18.

    Article  CAS  PubMed  Google Scholar 

  31. Cantoni, O., Sestili, P., Palomba, L., Guidarelli, A., Cattabeni, F., and Murray, D. (1996) Isolation and preliminary characterization of a Chinese hamster ovary cell line with high-degree resistance to hydrogen peroxide. Biochem. Pharmacol. 51, 1021–1029.

    Article  CAS  PubMed  Google Scholar 

  32. Vallis, K.A. and Wolf, C.R. (1996) Relationship between the adaptive response to oxidants and stable menadione-resistance in Chinese hamster ovary cell lines. Carcinogenesis 17, 649–654.

    Article  CAS  PubMed  Google Scholar 

  33. Cantoni, O., Guidarelli, A., Sestili, P., Mannello, F., Gazzanelli, G., and Cattabeni, F. (1993) Development and characterization of hydrogen peroxide-resistant Chinese hamster ovary cell variants-I. Relationship between catalase activity and the induction/stability of the oxidant-resistant phenotype. Biochem. Pharmacol. 45, 2251–2257.

    Article  CAS  PubMed  Google Scholar 

  34. Martins, E.A., Mori, L., Birnboim, H.C., and Meneghini, R. (1992) Menadione-resistant Chinese hamster cell variants are cross resistant to hydrogen peroxide and exhibit stable chromosomal and biochemical alterations. Mol. Cell Biochem. 118, 181–189.

    Article  CAS  PubMed  Google Scholar 

  35. Park, Y.M., Anderson, R.L., Spitz, D.R., and Hahn, G.M. (1992) Hypoxia and resistance to hydrogen peroxide confer resistance to tumor necrosis factor in murine L929 cells. Radiat. Res. 131, 162–168.

    Article  CAS  PubMed  Google Scholar 

  36. Sagara, Y., Dargusch, R., Chambers, D., Davis, J., Schubert, D., and Maher, P. (1998) Cellular mechanisms of resistance to chronic oxidative stress. Free Radic. Biol. Med. 24, 1375–1389.

    Article  CAS  PubMed  Google Scholar 

  37. Goligorsky, M.S., Morgan, M.A., Lyubsky, S., Gross, R.W., Adams, D.T., and Spitz, D.R. (1993) Establishment of a hydrogen peroxide resistant variant of renal tubular epithelial cells: Role of calcium-independent phospholipase A2 in cell damage. Arch. Biochem. Biophys. 301, 119–128.

    Article  CAS  PubMed  Google Scholar 

  38. Laszlo, A., Davidson, T., Harvey, A., Sim, J.E., Malyapa, R.S., Spitz, D.R., and Roti, J.L. (2006) Alterations in heat-induced radiosensitization accompanied by nuclear structure alterations in Chinese Hamster cells. Int. J. Hyperthermia. 22, 43–60.

    Article  CAS  PubMed  Google Scholar 

  39. Sullivan, S.J., Roberts, R.J., and Spitz, D.R. (1991) Replacement of media in cell culture alters oxygen toxicity: Possible role of lipid aldehydes and glutathione transferases in O2 toxicity. J. Cell. Physiol. 147, 427–433.

    Article  CAS  PubMed  Google Scholar 

  40. Spitz, D.R., Sullivan, S.J., Kinter, M.T., Adams, D.T., Sherman, C.M., and Roberts, R.J. (1995) Mechanisms of resistance to oxidative stress in O2-resistant cells. In: The Oxygen Paradox (Davies, K.J.A. and Ursini, F., Eds.), CLEUP University Press, Padova, Italy, pp. 405–412.

    Google Scholar 

  41. Joenje, H., Gille, J.J., Oostra, A.B., and Van der Valk, P. (1985) Some characteristics of hyperoxia-adapted HeLa cells. A tissue culture model for cellular oxygen tolerance. Lab. Invest. 52, 420–428.

    CAS  PubMed  Google Scholar 

  42. van der Valk, P., Gille, J.J., Oostra, A.B., Roubos, E.W., Sminia, T., and Joenje, H. (1985) Characterization of an oxygen-tolerant cell line derived from Chinese hamster ovary. Antioxygenic enzyme levels and ultrastructural morphometry of peroxisomes and mitochondria. Cell Tissue Res. 239, 61–68.

    Article  PubMed  Google Scholar 

  43. Campian, J.L., Qian, M., Gao, X., and Eaton, J.W. (2004) Oxygen tolerance and coupling of mitochondrial electron transport. J. Biol. Chem. 279, 46580–46587.

    Article  CAS  PubMed  Google Scholar 

  44. Li, J., Gao, X., Qian, M., and Eaton, J.W. (2004) Mitochondrial metabolism underlies hyperoxic cell damage. Free Radic. Biol. Med. 36, 1460–1470.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

DRS is supported by NIH R01-CA100045, DOE DE-FG02-02ER63447, and NIEHS P42 ES013661. SJS is supported by the Department of Pediatrics at the University of Iowa.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Spitz, D.R., Sullivan, S.J. (2010). The Generation of Stable Oxidative Stress-Resistant Phenotypes in Chinese Hamster Fibroblasts Chronically Exposed to Hydrogen Peroxide or Hyperoxia. In: Uppu, R., Murthy, S., Pryor, W., Parinandi, N. (eds) Free Radicals and Antioxidant Protocols. Methods in Molecular Biology, vol 610. Humana Press. https://doi.org/10.1007/978-1-60327-029-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-029-8_11

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-710-5

  • Online ISBN: 978-1-60327-029-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics