Skip to main content

Identification of Nucleic Acid High-Affinity Binding Sequences of Proteins by SELEX

  • Protocol
  • First Online:
DNA-Protein Interactions

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 543))

Summary

A technique is described for the identification of nucleic acid sequences bound with high affinity by proteins or by other molecules suitable for a partitioning assay. Here, a histidine-tagged protein is allowed to interact with a pool of nucleic acids and the protein–nucleic acid complexes formed are retained on a Ni-NTA matrix. Nucleic acids with a low level of recognition by the protein are washed away. The pool of recovered nucleic acids is amplified by the polymerase chain reaction and is submitted to further rounds of selection. Each round of selection increases the proportion of sequences that are avidly bound by the protein of interest. The cloning and sequencing of these sequences finally completes their identification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Oliphant, A.R., Brandl, C.J., and Struhl, K. (1989). Defining the sequence specificity of DNA-binding proteins by selecting binding sites from random-sequence oligonucleotides: analysis of yeast GCN4 protein. Mol. Cell. Biol 9, 2944–2949.

    PubMed  CAS  Google Scholar 

  2. Tuerk, C., and Gold, L. (1990). Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505–510.

    Article  PubMed  CAS  Google Scholar 

  3. Gold, L., Polisky, B., Uhlenbeck, O., and Yarus, M. (1995). Diversity of oligonucleotide functions. Ann. Rev. Biochem 64, 763–797.

    Article  PubMed  CAS  Google Scholar 

  4. Ellington, A.D., and Szostak, J.W. (1990). In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822.

    Article  PubMed  CAS  Google Scholar 

  5. Irvine, D., Tuerk, C., and Gold, L. (1991). SELEXION. Systematic evolution of ligands by exponential enrichment with integrated optimization by non-linear analysis. J. Mol. Biol 222, 739–761.

    Article  PubMed  CAS  Google Scholar 

  6. Stoltenburg, R., Reinemann, C., and Strehlitz, B. (2007). SELEX – a (r)evolutionary method to generate high-affinity nucleic acid ligandsBiomol. Eng 24, 381–403.

    Article  PubMed  CAS  Google Scholar 

  7. Kim, S., Shi, H., Lee, D. K., and Lis, J. T. (2003). Specific SR protein-dependent splicing substrates identified through genomic SELEX. Nucleic Acids Res 31, 1955–1961.

    Article  PubMed  CAS  Google Scholar 

  8. Shtatland, T., Gill, S. C., Javornik, B. E., Johansson, H. E., Singer, B. S., Uhlenbeck, O. C., Zichi, D. A., and Gold, L. (2000). Interactions of Escherichia coli RNA with bacteriophage MS2 coat protein: genomic SELEX. Nucleic Acids Res. 28, E93.

    Article  Google Scholar 

  9. Mosing, R. K., and Bowser, M. T. (2007). Microfluidic selection and applications of aptamers.J. Sep. Sci 30, 1420–1426.

    Article  PubMed  CAS  Google Scholar 

  10. Cox, J.C., and Ellington, A.D. (2001). Automated selection of anti-protein aptamers. Bioorg. Med. Chem 9, 2525–2531.

    Article  PubMed  CAS  Google Scholar 

  11. Cox, J. C., Hayhurst, A., Hesselberth, J., Bayer, T. S., Georgiou, G., and Ellington, A. D. (2002). Automated selection of aptamers against protein targets translated in vitro: from gene to aptamer. Nucleic Acids Res. 30, e108.

    Article  PubMed  Google Scholar 

  12. Hybarger, G., Bynum, J., Williams, R.F., Valdes, J.J., and Chambers, J.P. (2006). A microfluidic SELEX prototype. Anal. Bioanal. Chem 384, 191–198.

    Article  PubMed  CAS  Google Scholar 

  13. Bouvet, P., Matsumoto, K., and Wolffe, A. P. (1995). Sequence-specific RNA recognition by the Xenopus Y-box proteins. An essential role for the cold shock domain. J. Biol. Chem 270, 28297–28303.

    Article  PubMed  CAS  Google Scholar 

  14. Clouaire, T., Roussigne, M., Ecochard, V., Mathe, C., Amalric, F., and Girard, J. P. (2005). The THAP domain of THAP1 is a large C2CH module with zinc-dependent sequence-specific DNA-binding activity. Proc. Natl. Acad. Sci. USA 102, 6907–6912.

    Article  PubMed  CAS  Google Scholar 

  15. Ghisolfi-Nieto, L., Joseph, G., Puvion-Dutilleul, F., Amalric, F., and Bouvet, P. (1996). Nucleolin is a sequence-specific RNA-binding protein: characterization of targets on pre-ribosomal RNA. J. Mol. Biol 260, 34–53.

    Article  PubMed  CAS  Google Scholar 

  16. Triqueneaux, G., Velten, M., Franzon, P., Dautry, F., and Jacquemin-Sablon, H. (1999). RNA binding specificity of Unr, a protein with five cold shock domains. Nucleic Acids Res 27, 1926–1934.

    Article  PubMed  CAS  Google Scholar 

  17. Tsai, D.E., Harper, D.S., and Keene, J.D. (1991). U1-snRNP-A protein selects a ten nucleotide consensus sequence from a degenerate RNA pool presented in various structural contexts. Nucleic Acids Res 19, 4931–4936.

    Article  PubMed  CAS  Google Scholar 

  18. Harper, D.S., Fresco, L.D., and Keene, J.D. (1992). RNA binding specificity of a Drosophila snRNP protein that shares sequence homology with mammalian U1-A and U2-B″ proteins. Nucleic Acids Res 20, 3645–3650.

    Article  PubMed  CAS  Google Scholar 

  19. Gopinath, S.C. (2007). Methods developed for SELEX. Anal. Bioanal. Chem 387, 171–182.

    Article  PubMed  CAS  Google Scholar 

  20. Bartel, D. P., Zapp, M. L., Green, M. R., and Szostak, J. W. (1991). HIV-1 Rev regulation involves recognition of non-Watson-Crick base pairs in viral RNA. Cell 67, 529–536.

    Article  PubMed  CAS  Google Scholar 

  21. Gao, F. B., Carson, C. C., Levine, T., and Keene, J. D. (1994). Selection of a subset of mRNAs from combinatorial 3′ untranslated region libraries using neuronal RNA-binding protein Hel-N1. Proc. Natl. Acad. Sci. USA 91, 11207–11211.

    Article  PubMed  CAS  Google Scholar 

  22. Singer, B. S., Shtatland, T., Brown, D., and Gold, L. (1997). Libraries for genomic SELEX. Nucleic Acids Res 25, 781–786.

    Article  PubMed  CAS  Google Scholar 

  23. Pollock, R., and Treisman, R. (1990). A sensitive method for the determination of protein-DNA binding specificities. Nucleic Acids Res 18, 6197–6204.

    Article  PubMed  CAS  Google Scholar 

  24. Ringquist, S., Jones, T., Snyder, E. E., Gibson, T., Boni, I., and Gold, L. (1995). High-affinity RNA ligands to Escherichia coli ribosomes and ribosomal protein S1: comparison of natural and unnatural binding sites. Biochemistry 34, 3640–3648.

    Article  PubMed  CAS  Google Scholar 

  25. Tuerk, C., Eddy, S., Parma, D., and Gold, L. (1990). Autogenous translational operator recognized by bacteriophage T4 DNA polymerase. J. Mol. Biol 213, 749–761.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work in the authors’ laboratory is supported by grants from the CNRS, ANR N° BLAN07-2_190263, and Association pour la Recherche sur le Cancer (ARC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Bouvet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Bouvet, P. (2009). Identification of Nucleic Acid High-Affinity Binding Sequences of Proteins by SELEX. In: Leblanc, B., Moss, T. (eds) DNA-Protein Interactions. Methods in Molecular Biology™, vol 543. Humana Press. https://doi.org/10.1007/978-1-60327-015-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-015-1_11

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-014-4

  • Online ISBN: 978-1-60327-015-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics