Skip to main content

An Overview of the Identification, Detection, and Functional Analysis of Drosophila MicroRNAs

  • Protocol
Drosophila

Part of the book series: Methods in Molecular Biology ((MIMB,volume 420))

Abstract

MicroRNAs (miRNAs), small noncoding RNAs that post-transcriptionally regulate gene expression, are one of the most abundant classes of gene regulators. Yet, little is known about the roles that specific miRNAs play in the development of multicellular organisms. Drosophila provides an excellent model system to explore the in vivo activities of particular miRNAs within the context of well-defined gene-expression programs that control the development of a complex organism. This chapter reviews the various approaches currently used to identify Drosophila miRNAs, detect their expression, determine their messenger RNA targets, and study their function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berezikov, E., Guryev, V., van de Belt, J., Wienholds, E., Plasterk, R. H., and Cuppen, E. (2005) Phylogenetic shadowing and computational identification of human microRNA genes. Cell 120, 21–24.

    Article  CAS  PubMed  Google Scholar 

  2. Lewis, B. P., Burge, C. B., and Bartel, D. P. (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20.

    Article  CAS  PubMed  Google Scholar 

  3. Sempere, L. F., Cole, C. N., McPeek, M. A., and Peterson, K. J. (2006) The phylogenetic distribution of metazoan microRNAs: insights into evolutionary complexity and constraint. J. Exp. Zool. B. Mol. Dev. Evol. 306B(6), 575–588.

    Article  CAS  Google Scholar 

  4. Ambros, V., Bartel, B., Bartel, D. P., et al. (2003) A uniform system for microRNA annotation. RNA 9, 277–279.

    Article  CAS  PubMed  Google Scholar 

  5. Aravin, A. A., Lagos-Quintana, M., Yalcin, A., et al. (2003) The small RNA profile during Drosophila melanogaster development. Dev. Cell 5, 337–350.

    Article  CAS  PubMed  Google Scholar 

  6. Lagos-Quintana, M., Rauhut, R., Lendeckel, W., and Tuschl, T. (2001) Identification of novel genes coding for small expressed RNAs. Science 294, 853–858.

    Article  CAS  PubMed  Google Scholar 

  7. Lai, E. C., Tomancak, P., Williams, R. W., and Rubin, G. M. (2003) Computational identification of Drosophila microRNA genes. Genome Biol. 4, R42.

    Article  PubMed  Google Scholar 

  8. Leaman, D., Chen, P. Y., Fak, J., et al. (2005) Antisense-mediated depletion reveals essential and specific functions of microRNAs in Drosophila development. Cell 121, 1097–1108.

    Article  CAS  PubMed  Google Scholar 

  9. Sempere, L. F., Sokol, N. S., Dubrovsky, E. B., Berger, E. M., and Ambros, V. (2003) Temporal regulation of microRNA expression in Drosophila melanogaster mediated by hormonal signals and broad-Complex gene activity. Dev. Biol. 259, 9–18.

    Article  CAS  PubMed  Google Scholar 

  10. Ambros, V. and Lee, R. C. (2004) Identification of microRNAs and other tiny noncoding RNAs by cDNA cloning. Methods Mol. Biol. 265, 131–158.

    CAS  PubMed  Google Scholar 

  11. Aravin, A. and Tuschl, T. (2005) Identification and characterization of small RNAs involved in RNA silencing. FEBS Lett. 579, 5830–5840.

    Article  CAS  PubMed  Google Scholar 

  12. Lee, Y., Ahn, C., Han, J., et al. (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415–419.

    Article  CAS  PubMed  Google Scholar 

  13. Kosman, D., Mizutani, C. M., Lemons, D., Cox, W. G., McGinnis, W., and Bier, E. (2004) Multiplex detection of RNA expression in Drosophila embryos. Science 305, 846.

    Article  CAS  PubMed  Google Scholar 

  14. Aboobaker, A. A., Tomancak, P., Patel, N., Rubin, G. M., and Lai, E. C. (2005) Drosophila microRNAs exhibit diverse spatial expression patterns during embryonic development. Proc. Natl. Acad. Sci. USA 102, 18,017–18,022.

    Article  CAS  PubMed  Google Scholar 

  15. Biemar, F., Zinzen, R., Ronshaugen, M., Sementchenko, V., Manak, J. R., and Levine, M. S. (2005) Spatial regulation of microRNA gene expression in the Drosophila embryo. Proc. Natl. Acad. Sci. USA 102, 15,907–15,911.

    Article  CAS  PubMed  Google Scholar 

  16. Sokol, N. S. and Ambros, V. (2005) Mesodermally expressed Drosophila microRNA-1 is regulated by Twist and is required in muscles during larval growth. Genes Dev. 19, 2343–2354.

    Article  CAS  PubMed  Google Scholar 

  17. Stark, A., Brennecke, J., Bushati, N., Russell, R. B., and Cohen, S. M. (2005) Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3′UTR evolution. Cell 123, 1133–1146.

    Article  CAS  PubMed  Google Scholar 

  18. Thomson, J. M., Newman, M., Parker, J. S., Morin-Kensicki, E. M., Wright, T., and Hammond, S. M. (2006) Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev. 20, 2202–2207.

    Article  CAS  PubMed  Google Scholar 

  19. Kwon, C., Han, Z., Olson, E. N., and Srivastava, D. (2005) MicroRNA1 influences cardiac differentiation in Drosophila and regulates Notch signaling. Proc. Natl. Acad. Sci. USA 102, 18,986–18,991.

    Article  CAS  PubMed  Google Scholar 

  20. Teleman, A. A., Maitra, S., and Cohen, S. M. (2006) Drosophila lacking microRNA miR-278 are defective in energy homeostasis. Genes Dev. 20, 417–422.

    Article  CAS  PubMed  Google Scholar 

  21. Nairz, K., Rottig, C., Rintelen, F., Zdobnov, E., Moser, M., and Hafen, E. (2006) Overgrowth caused by misexpression of a microRNA with dispensable wild-type function. Dev. Biol. 291, 314–324.

    Article  CAS  PubMed  Google Scholar 

  22. Kloosterman, W. P., Wienholds, E., de Bruijn, E., Kauppinen, S., and Plasterk, R. H. (2006) In situ detection of miRNAs in animal embryos using LNA-modified oligonucleotide probes. Nat. Methods 3, 27–29.

    Article  CAS  PubMed  Google Scholar 

  23. Wienholds, E., Kloosterman, W. P., Miska, E., et al. (2005) MicroRNA expression in zebrafish embryonic development. Science 309, 310–311.

    Article  CAS  PubMed  Google Scholar 

  24. Li, X. and Carthew, R. W. (2005) A microRNA mediates EGF receptor signaling and promotes photoreceptor differentiation in the Drosophila eye. Cell 123, 1267–1277.

    Article  CAS  PubMed  Google Scholar 

  25. Brennecke, J., Hipfner, D. R., Stark, A., Russell, R. B., and Cohen, S. M. (2003) bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113, 25–36.

    Article  CAS  PubMed  Google Scholar 

  26. Lai, E. C., Tam, B., and Rubin, G. M. (2005) Pervasive regulation of Drosophila Notch target genes by GY-box-, Brd-box-, and K-box-class microRNAs. Genes Dev. 19, 1067–1080.

    Article  CAS  PubMed  Google Scholar 

  27. Stark, A., Brennecke, J., Russell, R. B., and Cohen, S. M. (2003) Identification of Drosophila MicroRNA targets. PLoS Biol. 1, E60.

    Article  PubMed  Google Scholar 

  28. Forstemann, K., Tomari, Y., Du, T., et al. (2005) Normal microRNA maturation and germ-line stem cell maintenance requires Loquacious, a double-stranded RNAbinding domain protein. PLoS Biol. 3, e236.

    Article  PubMed  Google Scholar 

  29. Brennecke, J., Stark, A., Russell, R. B., and Cohen, S. M. (2005) Principles of microRNA-target recognition. PLoS Biol. 3, e85.

    Article  PubMed  Google Scholar 

  30. Burgler, C. and Macdonald, P. M. (2005) Prediction and verification of microRNA targets by MovingTargets, a highly adaptable prediction method. BMC Genomics 6, 88.

    Article  PubMed  Google Scholar 

  31. Chan, C. S., Elemento, O., and Tavazoie, S. (2005) Revealing posttranscriptional regulatory elements through network-level conservation. PLoS Comput. Biol. 1, e69.

    Article  PubMed  Google Scholar 

  32. Enright, A. J., John, B., Gaul, U., Tuschl, T., Sander, C., and Marks, D. S. (2003) MicroRNA targets in Drosophila. Genome Biol. 5, R1.

    Article  PubMed  Google Scholar 

  33. Rajewsky, N. and Socci, N. D. (2004) Computational identification of microRNA targets. Dev. Biol. 267, 529–535.

    Article  CAS  PubMed  Google Scholar 

  34. Rehmsmeier, M., Steffen, P., Hochsmann, M., and Giegerich, R. (2004) Fast and effective prediction of microRNA/target duplexes. RNA 10, 1507–1517.

    Article  CAS  PubMed  Google Scholar 

  35. Grun, D., Wang, Y. L., Langenberger, D., Gunsalus, K. C., and Rajewsky, N. (2005) microRNA target predictions across seven Drosophila species and comparison to mammalian targets. PLoS Comput. Biol. 1, e13.

    Article  PubMed  Google Scholar 

  36. Robins, H., Li, Y., and Padgett, R. W. (2005) Incorporating structure to predict microRNA targets. Proc. Natl. Acad. Sci. USA 102, 4006–4009.

    Article  CAS  PubMed  Google Scholar 

  37. Ronshaugen, M., Biemar, F., Piel, J., Levine, M., and Lai, E. C. (2005) The Drosophila microRNA iab-4 causes a dominant homeotic transformation of halteres to wings. Genes Dev. 19, 2947–2952.

    Article  CAS  PubMed  Google Scholar 

  38. Lai, E. C., Burks, C., and Posakony, J. W. (1998) The K box, a conserved 3′ UTR sequence motif, negatively regulates accumulation of enhancer of split complex transcripts. Development 125, 4077–4088.

    CAS  PubMed  Google Scholar 

  39. Lai, E. C. and Posakony, J. W. (1997) The Bearded box, a novel 3′ UTR sequence motif, mediates negative post-transcriptional regulation of Bearded and Enhancer of split Complex gene expression. Development 124, 4847–4856.

    CAS  PubMed  Google Scholar 

  40. Lai, E. C. (2002) Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat. Genet. 30, 363–364.

    Article  CAS  PubMed  Google Scholar 

  41. Didiano, D. and Hobert, O. (2006) Perfect seed pairing is not a generally reliable predictor for miRNA-target interactions. Nat. Struct. Mol. Biol. 13, 849–851.

    Article  CAS  PubMed  Google Scholar 

  42. Lee, Y. S., Nakahara, K., Pham, J. W., et al. (2004) Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117, 69–81.

    Article  CAS  PubMed  Google Scholar 

  43. Hatfield, S. D., Shcherbata, H. R., Fischer, K. A., Nakahara, K., Carthew, R. W., and Ruohola-Baker, H. (2005) Stem cell division is regulated by the microRNA pathway. Nature 435, 974–978.

    Article  CAS  PubMed  Google Scholar 

  44. Jiang, F., Ye, X., Liu, X., Fincher, L., McKearin, D., and Liu, Q. (2005) Dicer-1 and R3D1-L catalyze microRNA maturation in Drosophila. Genes Dev. 19, 1674–1679.

    Article  CAS  PubMed  Google Scholar 

  45. Nakahara, K., Kim, K., Sciulli, C., Dowd, S. R., Minden, J. S., and Carthew, R. W. (2005) Targets of microRNA regulation in the Drosophila oocyte proteome. Proc. Natl. Acad. Sci. USA 102, 12,023–12,028.

    Article  CAS  PubMed  Google Scholar 

  46. Xu, P., Guo, M., and Hay, B. A. (2004) MicroRNAs and the regulation of cell death. Trends Genet. 20, 617–624.

    Article  CAS  PubMed  Google Scholar 

  47. Hipfner, D. R., Weigmann, K., and Cohen, S. M. (2002) The bantam gene regulates Drosophila growth. Genetics 161, 1527–1537.

    CAS  PubMed  Google Scholar 

  48. Xu, P., Vernooy, S. Y., Guo, M., and Hay, B. A. (2003) The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr. Biol. 13, 790–795.

    Article  CAS  PubMed  Google Scholar 

  49. Meister, G., Landthaler, M., Dorsett, Y., and Tuschl, T. (2004) Sequence-specific inhibition of microRNA-and siRNA-induced RNA silencing. RNA 10, 544–550.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Sokol, N.S. (2008). An Overview of the Identification, Detection, and Functional Analysis of Drosophila MicroRNAs. In: Dahmann, C. (eds) Drosophila. Methods in Molecular Biology, vol 420. Humana Press. https://doi.org/10.1007/978-1-59745-583-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-583-1_20

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-817-1

  • Online ISBN: 978-1-59745-583-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics