Skip to main content

Amylose Affinity Chromatography of Maltose-Binding Protein

Purification by both Native and Novel Matrix-Assisted Dialysis Refolding Methods

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 421))

Summary

Maltose-binding protein (MBP) is a carrier protein for high level recombinant protein and peptide production from either the cytoplasm or periplasm of Escherichia coli. The affinity matrix for purifying MBP-passenger proteins utilizes amylose covalently attached to magnetic beads, agarose, or a chemically inert fast protein liquid chromatography (FPLC) matrix – exploiting the natural affinity of MBP for α-(1→4)-maltodextrins in the stationary phase. A fundamental problem is the expression and purification failure of as much as 30% of all constructs, which is limiting for one of the best solubilizing carrier proteins available for recombinant expression. In this chapter, we have discussed aspects of MBP biology that can impact upon binding to the amylose affinity matrix including cloning considerations, structural complications, hydrophobic buffer additives and the presence of cellular biomolecules that bind or modify the matrix during purification. Chromatography conditions are presented for purification at very small scales of less than 0.5 mL using amylose magnetic beads, a batch and semi-batch method for small to moderate scale purifications up to approximately 35 mg and larger scale FPLC methods. A novel matrix-assisted dialysis refolding method is also described whereby MBP-passenger proteins can be refolded in the presence of amylose matrix in instances where native purification methods fail to bind the amylose matrix.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Maina, C. V., Riggs, P. D., Grandea, A. G., III, Slatko, B. E., Moran, L. S., Tagliamonte, J. A., McReynolds, L. A., and Guan, C. D., (1988), An Escherichia coli vector to express and purify foreign proteins by fusion to and separation from maltose-binding protein, Gene 74, 365.

    Article  CAS  PubMed  Google Scholar 

  2. pMAL™ Protein Fusion and Purification System (Expression and Purification of Proteins and Cloned Genes), (2006), New England Biolabs. V 5.1.

    Google Scholar 

  3. Addgene, (2006), http://www.addgene.org.

  4. Fox, J. D., Routzahn, K. M., Bucher, M. h., and Waugh, D. S., (2003), Maltodextrin-binding proteins from diverse bacteria and archaea are potent solubility enhancers, FEBS Lett. 537, 53.

    Article  CAS  PubMed  Google Scholar 

  5. Nallamsetty, S., Austin, B. P., Penrose, K. J., and Waugh, D. S., (2005), Gateway vectors for the production of combinatorially-tagged his6-MBP fusion proteins in the cytoplasm and periplasm of Escherichia coli, Protein Sci. 14, 2964.

    Article  CAS  PubMed  Google Scholar 

  6. Luecke, h., and Quiocho, F. A., (1990), high specificity of a phosphate transport protein determined by hydrogen bonds, Nature 347, 402–406.

    Article  CAS  PubMed  Google Scholar 

  7. Pflugrath, J. W., and Quiocho, F. A., (1988), The 2 A resolution structure of the sulfate-binding protein involved in active transport in Salmonella typhimurium, J. Mol. Biol. 200, 163–180.

    Article  CAS  PubMed  Google Scholar 

  8. de Pina, K., Navarro, C., McWalter, L., Boxer, D. h., Price, N. C., Kelly, S. M., Mandrand-Berthelot, M. A., and Wu, L. F., (1995), Purification and characterization of the periplasmic nickel-binding protein NikA of Escherichia coli K12, Eur. J. Biochem. 227, 857–865.

    Article  PubMed  Google Scholar 

  9. Bruns, C. M., Nowalk, A. J., Arvai, A. S., McTigue, M. A., Vaughan, K. G., Mietzner, T. A., and McRee, D. E., (1997), Structure of haemophilus influenzae Fe(+3)-binding protein reveals convergent evolution within a superfamily, Nat. Struct. Biol. 4, 919–924.

    Article  CAS  PubMed  Google Scholar 

  10. Kang, C. h., Shin, W. C., Yamagata, Y., Gokcen, S., Ames, G. F., and Kim, S. h., (1991), Crystal structure of the lysine-, arginine-, ornithine-binding protein (LAO) from Salmonella typhimurium at 2.7-A resolution, J. Biol. Chem. 266, 23893–23899.

    CAS  PubMed  Google Scholar 

  11. Oh, B. h., Pandit, J., Kang, C. h., Nikaido, K., Gokcen, S., Ames, G. F., and Kim, S. h., (1993), Three-dimensional structures of the periplasmic lysine/arginine/ornithine-binding protein with and without a ligand, J. Biol. Chem. 268, 17648–17649.

    CAS  Google Scholar 

  12. Sack, J. S., Saper, M. A., and Quiocho, F. A., (1989), Periplasmic binding protein structure and function. Refined X-ray structures of the leucine/isoleucine/valine-binding protein and its complex with leucine, J. Mol. Biol. 206, 171–191.

    Article  CAS  PubMed  Google Scholar 

  13. Yao, N., Trakhanov, S., and Quiocho, F. A., (1994), Refined 1.89-A structure of the histidine-binding protein complexed with histidine and its relationship with many other active transport/chemosensory proteins, Biochemistry 33, 4769–4779.

    Article  CAS  PubMed  Google Scholar 

  14. Nickitenko, A. V., Trakhanov, S., and Quiocho, F. A., (1995), 2 A resolution structure of DppA, a periplasmic dipeptide transport/chemosensory receptor, Biochemistry 34, 16585–16595.

    Article  CAS  PubMed  Google Scholar 

  15. Sleigh, S. h., Tame, J. R., Dodson, E. J., and Wilkinson, A. J., (1997), Peptide binding in OppA, the crystal structures of the periplasmic oligopeptide binding protein in the unliganded form and in complex with lysyllysine, Biochemistry 36, 9747–9758.

    Article  CAS  PubMed  Google Scholar 

  16. Quiocho, F. A., (1993), Probing the atomic interactions between proteins and carbohydrates, Biochem. Soc. Trans. 21, 442–448.

    CAS  PubMed  Google Scholar 

  17. Quiocho, F. A., (1986), Carbohydrate-binding proteins: tertiary structures and protein-sugar interactions, Annu. Rev. Biochem. 55, 287–315.

    Article  CAS  PubMed  Google Scholar 

  18. Boos, W., and Shuman, h., (1998), Maltose/maltodextrin system of Escherichia coli: transport, metabolism, and regulation, Microbiol. Mol. Biol. Rev. 62, 204.

    CAS  PubMed  Google Scholar 

  19. Kapust, R. B., and Waugh, D. S., (1999), Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused, Protein Sci. 8, 1668.

    Article  CAS  PubMed  Google Scholar 

  20. Richarme, G., and Caldas, T. D., (1997), Chaperone properties of the bacterial periplasmic substrate-binding proteins, J. Biol. Chem. 272, 15607.

    Article  CAS  PubMed  Google Scholar 

  21. Sachdev, D., and Chirgwin, J. M., (1998), Solubility of proteins isolated from inclusion bodies is enhanced by fusion to maltose-binding protein or thioredoxin, Protein Expr. Purif. 12, 122.

    Article  CAS  PubMed  Google Scholar 

  22. Ganesh, C., Zaidi, F. N., Udgaonkar, J. B., and Varadarajan, R., (2001), Reversible formation of on-pathway macroscopic aggregates during the folding of maltose binding protein, Protein Sci. 10, 1635.

    Article  CAS  PubMed  Google Scholar 

  23. Martineau, P., Saurin, W., hofnung, M., Spurlino, J. C., and Quiocho, F. A., (1990), Progress in the identification of interaction sites on the periplasmic maltose binding protein from E. coli, Biochimie 72, 397.

    Article  CAS  PubMed  Google Scholar 

  24. Spurlino, J. C., Lu, G. Y., and Quiocho, F. A., (1991), The 2.3-A resolution structure of the maltose- or maltodextrin-binding protein, a primary receptor of bacterial active transport and chemotaxis, J. Biol. Chem. 266, 5202.

    CAS  PubMed  Google Scholar 

  25. Shilton, B. h., Flocco, M. M., Nilsson, M., and Mowbray, S. L., (1996), Conformational changes of three periplasmic receptors for bacterial chemotaxis and transport: the maltose-, glucose/galactose- and ribose-binding proteins, J. Mol. Biol. 264, 350.

    Article  CAS  PubMed  Google Scholar 

  26. Sharff, A. J., Rodseth, L. E., Spurlino, J. C., and Quiocho, F. A., (1992), Crystallographic evidence of a large ligand-induced hinge-twist motion between the two domains of the maltodextrin binding protein involved in active transport and chemotaxis, Biochemistry 31, 10657.

    Article  CAS  PubMed  Google Scholar 

  27. Sachdev, D., and Chirgwin, J. M., (1998), Order of fusions between bacterial and mammalian proteins can determine solubility in Escherichia coli, Biochem. Biophys. Res. Commun. 244, 933.

    Article  CAS  PubMed  Google Scholar 

  28. Korf, U., Kohl, T., van der Zandt, h., Zahn, R., Schleeger, S., Ueberle, B., Wandschneider, S., Bechtel, S., Schnolzer, M., Ottleben, h., Wiemann, S., and Poustka, A., (2005), Large-scale protein expression for proteome research, Proteomics 5, 3571.

    Article  CAS  PubMed  Google Scholar 

  29. Gentz, R., Kuys, Y., Zwieb, C., Taatjes, D., Taatjes, h., Bannwarth, W., Stueber, D., and Ibrahimi, I., (1988), Association of degradation and secretion of three chimeric polypeptides in Escherichia coli, J. Bacteriol. 170, 2212.

    CAS  PubMed  Google Scholar 

  30. Arie, J. P., Miot, M., Sassoon, N., and Betton, J. M., (2006), Formation of active inclusion bodies in the periplasm of Escherichia coli, Mol. Microbiol. 62, 427.

    Article  CAS  PubMed  Google Scholar 

  31. Death, A., and Ferenci, T., (1994), Between feast and famine: endogenous inducer synthesis in the adaptation of Escherichia coli to growth with limiting carbohydrates, J. Bacteriol. 176, 5101.

    CAS  PubMed  Google Scholar 

  32. Notley, L., and Ferenci, T., (1995), Differential expression of mal genes under cAMP and endogenous inducer control in nutrient-stressed Escherichia coli, Mol. Microbiol. 16, 121.

    Article  CAS  PubMed  Google Scholar 

  33. Routzahn, K. M., and Waugh, D. S., (2002), Differential effects of supplementary affinity tags on the solubility of MBP fusion proteins, J. Struct. Funct. Genomics 2, 83.

    Article  CAS  PubMed  Google Scholar 

  34. Donnelly, M. I., Zhou, M., Millard, C. S., Clancy, S., Stols, L., Eschenfeldt, W. h., Collart, F. R., and Joachimiak, A., (2006), An expression vector tailored for large-scale, high-throughput purification of recombinant proteins, Protein Expr. Purif. 47, 446.

    Article  CAS  PubMed  Google Scholar 

  35. Gasteiger E., h. C., Gattiker A., Duvaud S., Wilkins M. R., Appel R. D., and Bairoch A., (2005), Protein Identification and Analysis Tools on the ExPASy Server, humana Press, Totawa.

    Google Scholar 

  36. Miller, D. M., III, Olson, J. S., Pflugrath, J. W., and Quiocho, F. A., (1983), Rates of ligand binding to periplasmic proteins involved in bacterial transport and chemotaxis, J. Biol. Chem. 258, 13665.

    CAS  PubMed  Google Scholar 

  37. Kyte, J., and Doolittle, R. F., (1982), A simple method for displaying the hydropathic character of a protein, J. Mol. Biol. 157, 105.

    Article  CAS  PubMed  Google Scholar 

  38. Dinner, A. R., Sali, A., Smith, L. J., Dobson, C. M., and Karplus, M., (2000), Understanding protein folding via free-energy surfaces from theory and experiment, Trends Biochem. Sci. 25, 331.

    Article  CAS  PubMed  Google Scholar 

  39. Ganesh, C., Shah, A. N., Swaminathan, C. P., Surolia, A., and Varadarajan, R., (1997), Thermodynamic characterization of the reversible, two-state unfolding of maltose binding protein, a large two-domain protein, Biochemistry 36, 5020.

    Article  CAS  PubMed  Google Scholar 

  40. Cattoli, F., and Sarti, G. C., (2002), Separation of MBP fusion proteins through affinity membranes, Biotechnol. Prog. 18, 94.

    Article  CAS  PubMed  Google Scholar 

  41. Tyndall, J. D., Nall, T., and Fairlie, D. P., (2005), Proteases universally recognize beta strands in their active sites, Chem. Rev. 105, 973.

    Article  CAS  PubMed  Google Scholar 

  42. Gibbons, I., and Schachman, h. K., (1976), A method for the separation of hybrids of chromatographically identical oligomeric proteins. Use of 3,4,5,6-tetrahydrophthaloyl groups as a reversible “chromatographic handle”, Biochemistry 15, 52.

    Article  CAS  PubMed  Google Scholar 

  43. Wearne, S. J., (1990), Factor Xa cleavage of fusion proteins. Elimination of non-specific cleavage by reversible acylation, FEBS Lett. 263, 23.

    Article  CAS  PubMed  Google Scholar 

  44. Schafer, R., (1982), Synthesis and application of chemically reactive proteins by the reversible modification of protein amino groups with exo-cis-3,6-endo-epoxy-4,5-cis-epoxyhexahydrophthalic anhydride, Biochem J. 203, 345.

    CAS  PubMed  Google Scholar 

  45. Crabtree, S., and Cronan, J. E., Jr., (1984), Facile and gentle method for quantitative lysis of Escherichia coli and Salmonella typhimurium, J. Bacteriol. 158, 354.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Pattenden, L.K., Thomas, W.G. (2008). Amylose Affinity Chromatography of Maltose-Binding Protein. In: Zachariou, M. (eds) Affinity Chromatography. Methods in Molecular Biology™, vol 421. Humana Press. https://doi.org/10.1007/978-1-59745-582-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-582-4_12

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-659-7

  • Online ISBN: 978-1-59745-582-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics