Skip to main content

Survey Sequencing and Radiation Hybrid Mapping to Construct Comparative Maps

  • Protocol
Book cover Phylogenomics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 422))

Abstract

Radiation hybrid (RH) mapping has become one of the most well-established techniques for economically and efficiently navigating genomes of interest. The success of the technique relies on random chromosome breakage of a target genome, which is then captured by recipient cells missing a preselected marker. Selection for hybrid cells that have DNA fragments bearing the marker of choice, plus a random set of DNA fragments from the initial irradiation, generates a set of cell lines that recapitulates the genome of the target organism several-fold. Markers or genes of interest are analyzed by PCR using DNA isolated from each cell line. Statistical tools are applied to determine both the linear order of markers on each chromosome, and the confidence of each placement. The resolution of the resulting map relies on many factors, most notably the degree of breakage from the initial radiation as well as the number of hybrid clones and mean retention value.

A high-resolution RH map of a genome derived from low pass or survey sequencing (coverage from 1 to 2 times) can provide essentially the same comparative data on gene order that is derived from high-coverage (greater than ×7) genome sequencing. When combined with fluorescence in situ hybridization, RH maps are complete and ordered blueprints for each chromosome. They give information about the relative order and spacing of genes and markers, and allow investigators to move between target and reference genomes, such as those of mouse or human, with ease although the approach is not limited to mammal genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mellersh, C. S., Langston, A. A., Acland, G. M., et al. (1997) A linkage map of the canine genome. Genomics 46, 326–336.

    Article  CAS  PubMed  Google Scholar 

  2. Priat, C., Hitte, C., Vignaux, F., et al. (1998) A whole-genome radiation hybrid map of the dog genome. Genomics 54, 361–378.

    Article  CAS  PubMed  Google Scholar 

  3. Vignaux, F., Hitte, C., Priat, C., Chuat, J. C., Andre, C., and Galibert, F. (1999) Construction and optimization of a dog whole-genome radiation hybrid panel. Mamm. Genome 10, 888–894.

    Article  CAS  PubMed  Google Scholar 

  4. Mellersh, C. S., Hitte, C., Richman, M., et al. (2000) An integrated linkage-radiation hybrid map of the canine genome. Mamm. Genome 11, 120–130.

    Article  CAS  PubMed  Google Scholar 

  5. Ostrander, E. A. and Wayne, R. K. (2005) The canine genome. Genome Res. 15, 1831–1837.

    Article  PubMed  Google Scholar 

  6. Parker, H. G. and Ostrander, E. A. (2005) Canine genomics and genetics: running with the pack. PLoS Genet. 1(5).

    Google Scholar 

  7. Breen, M., Bullerdiek, J., and Langford, C. F. (1999) The DAPI banded karyotype of the domestic dog (Canis familiaris) generated using chromosome-specific paint probes. Chromosome Res. 7, 401–406.

    Article  CAS  PubMed  Google Scholar 

  8. Breen, M., Thomas, R., Binns, M. M., Carter, N. P., and Langford, C. F. (1999) Reciprocal chromosome painting reveals detailed regions of conserved synteny between the karyotypes of the domestic dog (Canis familiaris) and human. Genomics 61, 145–155.

    Article  CAS  PubMed  Google Scholar 

  9. Yang, F., O’Brien, P. C., Milne, B. S., et al. (1999) A complete comparative chromosome map for the dog, red fox, and human and its integration with canine genetic maps. Genomics 62, 189–202.

    Article  CAS  PubMed  Google Scholar 

  10. Yang, F., Graphodatsky, A. S., O’Brien, P. C., et al. (2000) Reciprocal chromosome painting illuminates the history of genome evolution of the domestic cat, dog and human. Chromosome Res. 8, 393–404.

    Article  CAS  PubMed  Google Scholar 

  11. Breen, M., Langford, C. F., Carter, N. P., et al. (1999) FISH mapping and identification of canine chromosomes. J. Hered. 90, 27–30.

    Article  CAS  PubMed  Google Scholar 

  12. Breen, M., Jouquand, S., Renier, C., et al. (2001) Chromosome-specific single-locus FISH probes allow anchorage of an 1800-marker integrated radiation-hybrid/ linkage map of the domestic dog genome to all chromosomes. Genome Res. 11, 1784–1795.

    Article  CAS  PubMed  Google Scholar 

  13. Guyon, R., Lorentzen, T. D., Hitte, C., et al. (2003) A 1-Mb resolution radiation hybrid map of the canine genome. Proc. Natl Acad. Sci. USA 100, 5296–5301.

    Article  CAS  PubMed  Google Scholar 

  14. Guyon, R., Kirkness, E. F., Lorentzen, T. D., et al. (2003) Building comparative maps using 1.5× sequence coverage: human chromosome 1p and the canine genome. Cold Spring Harb. Symp. Quant. Biol. 68, 171–177.

    Article  CAS  PubMed  Google Scholar 

  15. Breen, M., Hitte, C., Lorentzen, T. D., et al. (2004) An integrated 4249 marker FISH/RH map of the canine genome. BMC Genomics 5, 1–11.

    Article  Google Scholar 

  16. Hitte, C., Madeoy, J., Kirkness, E. F., et al. (2005) Survey sequencing combined with dense radiation hybrid gene mapping facilitates genome navigation. Nat. Rev. Genet. 6, 643–648.

    Article  CAS  PubMed  Google Scholar 

  17. Vignaux, F., Priat, C., Jouquand, S., et al. (1999) Toward a dog radiation hybrid map. J. Hered. 90, 62–67.

    Article  CAS  PubMed  Google Scholar 

  18. Matise, T. C., Perlin, M., and Chakravarti, A. (1994) Automated construction of genetic linkage maps using an expert system (MultiMap): a human genome linkage map. Nat. Genet. 6, 384–390.

    Article  CAS  PubMed  Google Scholar 

  19. Agarwala, R., Applegate, D. L., Maglott, D., Schuler, G. D., and Schaffer, A. A. (2000) A fast and scalable radiation hybrid map construction and integration strategy. Genome Res. 10, 350–364.

    Article  CAS  PubMed  Google Scholar 

  20. Hitte, C., Lorentzen, T., Guyon, R., et al. (2003) Comparison of the MultiMap and TSP/CONCORDE packages for constructing radiation hybrid maps. J. Hered. 94, 9–13.

    Article  CAS  PubMed  Google Scholar 

  21. Kirkness, E. F., Bafna, V., Halpern, A. L., et al. (2003) The dog genome: survey sequencing and comparative analysis. Science 301, 1898–1903.

    Article  PubMed  Google Scholar 

  22. Lindblad-Toh, K., Wade, C. M., Mikkelsen, T., et al. (2005) Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438, 803–819.

    Article  CAS  PubMed  Google Scholar 

  23. Altschul, S. F., Madden, T. L., Schaffer, A. A., et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402.

    Article  CAS  PubMed  Google Scholar 

  24. Margulies, E. H., Maduro, V. V., Thomas, P. J., et al. (2005) Comparative sequencing provides insights about the structure and conservation of marsupial and monotreme genomes. Proc. Natl Acad. Sci. USA 102, 3354–3359.

    Article  CAS  PubMed  Google Scholar 

  25. Thomas, E. E. (2005) Short, local duplications in eukaryotic genomes. Curr. Opin. Genet. Dev. 15, 640–644.

    Article  CAS  PubMed  Google Scholar 

  26. Hardison, R. C. (2003) Comparative genomics. PLoS Biol. 1(2).

    Google Scholar 

  27. Senger, F., Priat, C., Hitte, C., et al. (2006) The first radiation hybrid map of a perch-like fish: The gilthead seabream (Sparus aurata L). Genomics 87, 793–800.

    Article  CAS  PubMed  Google Scholar 

  28. O’Brien, S. J., Womack, J. E., Lyons, L. A., et al. (1993) Anchored reference loci for comparative genome mapping in mammals. Nat. Genet. 3, 103–112.

    Article  PubMed  Google Scholar 

  29. Murphy, W. J., Larkin, D. M., Everts-van der Wind, A., et al. (2005) Dynamics of mammalian chromosome evolution inferred from multispecies comparative maps. Science 309, 613–617.

    Article  CAS  PubMed  Google Scholar 

  30. Boehnke, M., Lange, K., and Cox, D. R. (1991) Statistical methods for multipoint radiation hybrid mapping. Am. J. Hum. Genet. 49, 1174–1188.

    CAS  PubMed  Google Scholar 

  31. Soderlund, C., Lau, T., and Deloukas, P. (1998) Z extensions to the RHMAPPER package. Bioinformatics 14, 538–539.

    Article  CAS  PubMed  Google Scholar 

  32. Schiex, T. and Gaspin, C. (1997) CARTHAGENE: constructing and joining maximum likelihood genetic maps. Proc. Int. Conf. Intell. Syst. Mol. Biol. 5, 258–267.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Hitte, C., Kirkness, E.F., Ostrander, E.A., Galibert, F. (2008). Survey Sequencing and Radiation Hybrid Mapping to Construct Comparative Maps. In: Murphy, W.J. (eds) Phylogenomics. Methods in Molecular Biology™, vol 422. Humana Press. https://doi.org/10.1007/978-1-59745-581-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-581-7_5

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-764-8

  • Online ISBN: 978-1-59745-581-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics