Skip to main content

Roadmap Methods for Protein Folding

  • Protocol
Protein Structure Prediction

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 413))

Summary

Protein folding refers to the process whereby a protein assumes its intricate three-dimensional shape. This chapter reviews a class of methods for studying the folding process called roadmap methods. The goal of these methods is not to predict the folded structure of a protein, but rather to analyze the folding kinetics. It is assumed that the folded state is known. Roadmap methods maintain a graph representation of sampled conformations. By analyzing this graph one can predict structure formation order, the probability of folding, and get a coarse view of the energy landscape.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Gruebele. Protein folding: the free energy surface. Current Opinion in Structural Biology, 12:161–168, 2002.

    Article  CAS  PubMed  Google Scholar 

  2. T. Head-Gordon and S. Brown. Minimalist models for protein folding and design. Current Opinion in Structural Biology, 13:160–167, 2003.

    Article  CAS  PubMed  Google Scholar 

  3. X. Zhuang and M. Rief. Single-molecule folding. Current Opinion in Structural Biology, 13:88–97, 2003.

    Article  CAS  PubMed  Google Scholar 

  4. M. Vendruscolo and E. Paci. Protein folding: bringing theory and experiment closer together. Current Opinion in Structural Biology, 13:82–87, 2003.

    Article  CAS  PubMed  Google Scholar 

  5. C. M. Dobson. Protein folding and misfolding. Nature, 426:884–890,2003.

    Article  CAS  PubMed  Google Scholar 

  6. J. N. Onuchic and P. G. Wolynes. Theory of protein folding. Current Opinion in Structural Biology, 14:70–75, 2004.

    Article  CAS  PubMed  Google Scholar 

  7. C. M. Dobson. Principles of protein folding, misfolding and aggregation. Seminars in Cell & Developmental Biology, 15:3–16, 2004.

    Article  CAS  Google Scholar 

  8. M. S. Apaydin. Stochastic roadmap simulation: an efficient representation and algorithm for analyzing molecular motion. PhD thesis, Stanford University, Stanford, CA 94305 USA, Aug 2004.

    Google Scholar 

  9. S. L. Thomas, X. Tang, L. Tapia, and N. M. Amato. Simulating protein motions with rigidity analysis. In Proceedings of the ACM International Conference on Research in Computational Molecular Biology (RECOMB), pages 394–409, 2006.

    Google Scholar 

  10. S. Thomas, G. Song, and N. M. Amato. Protein folding by motion planning. Physical Biology, 2:S148–S155, 2005.

    Article  CAS  PubMed  Google Scholar 

  11. N. M. Amato, K. A. Dill, and G. Song. Using motion planning to map protein folding landscapes and analyze folding kinetics of known native structures. Journal of Computational Biology: A Journal of Computational Molecular Cell Biology, 10(3–4):239–255, 2003.

    CAS  Google Scholar 

  12. G. Song. A motion planning approach to protein folding. PhD thesis, Dept. of Computer Science, Texas A&M University, December 2003.

    Google Scholar 

  13. N. M. Amato and G. Song. Using motion planning to study protein folding pathways. Journal of Computational Biology: A Journal of Computational Molecular Cell Biology, 9(2):149–168, 2002.

    CAS  Google Scholar 

  14. N. Singhal and V. S. Pande. Error analysis and efficient sampling in Markovian state models for molecular dynamics. The Journal of Chemical Physics, 123(20):204909,2005.

    Article  PubMed  Google Scholar 

  15. N. Singhal, C. D. Snow, and V. S. Pande. Using path sampling to build better Markovian state models: predicting the folding rate and mechanism of a tryptophan zipper beta hairpin. The Journal of Chemical Physics, 121(1):415–425,2004.

    Article  CAS  PubMed  Google Scholar 

  16. T.-H. Chiang, M. S. Apaydin, D. L. Brutlag, D. Hsu, and J.-C. Latombe. Predicting experimental quantities in protein folding kinetics using stochastic roadmap simulation. In Proceedings of the ACM International Conference on Research in Computational Molecular Biology (RECOMB), pages 410–424, 2006.

    Google Scholar 

  17. M. S. Apaydin, D. L. Brutlag, C. Guestrin, D. Hsu, and J.-C. Latombe. Stochastic conformational roadmaps for computing ensemble properties of molecular motion. In J. D. Boissonnat, J. Burdick, K. Goldberg, and S. Hutchinson, editors, Algorithmic Foundations of Robotics V, pages 131–147. Springer,2004.

    Google Scholar 

  18. M. S. Apaydin, D. L. Brutlag, C. Guestrin, D. Hsu, J.-C. Latombe, and C. Varma. Stochastic roadmap simulation: an efficient representation and algorithm for analyzing molecular motion. Journal of Computational Biology: A Journal of Computational Molecular Cell Biology, 10(3–4):257–281, 2003.

    CAS  Google Scholar 

  19. M. S. Apaydin, C. E. Guestrin, C. Varma, D. L. Brutlag, and J.-C. Latombe. Stochastic roadmap simulation for the study of ligand- protein interactions. Bioinformatics, 18 Suppl 2:18–26, 2002.

    Google Scholar 

  20. M. Karplus and J. Kuriyan. Molecular dynamics and protein function. Proceedings of the National Academy of Sciences of the United States of America, 102:6679–6685, 2005.

    Article  CAS  PubMed  Google Scholar 

  21. D. R. Ripoll, J. A. Vila, and H. A. Scheraga. Folding of the villin headpiece subdomain from random structures. Analysis of the charge distribution as a function of pH. Journal of Molecular Biology, 339(4):915–925, 2004.

    Article  CAS  PubMed  Google Scholar 

  22. W. F. van Gunsteren and H. J. C. Berendsen. Computer simulation of molecular dynamics: methodology, applications and perspectives in chemistry. Angewandte Chemie International Edition in English, 29(9):992–1023, 1990.

    Article  Google Scholar 

  23. T. Huber, A. E. Torda, and W. F. van Gunsteren. Local elevation: a method for improving the searching properties of molecular dynamics simulation. Journal of Computer-Aided Molecular Design, 8(6):695–708, 1994.

    Article  CAS  PubMed  Google Scholar 

  24. B. G. Schulze, H. Grubmueller, and J. D. Evanseck. Functional significance of hierarchical tiers in carbonmonoxy myoglobin: conformational substates and transitions studied by conformational flooding simulations. Journal of the American Chemical Society, 122(36):8700–8711, 2000.

    Article  CAS  Google Scholar 

  25. Y. Zhang, D. Kihara, and J. Skolnick. Local energy landscape flattening: parallel hyperbolic Monte Carlo sampling of protein folding. Proteins, 48(2): 192–201, 2002.

    Article  CAS  PubMed  Google Scholar 

  26. K. Lindorff-Larsen, R. B. Best, M. A. DePristo, C. M. Dobson, and M. Vendruscolo. Simultaneous determination of protein structure and dynamics. Nature, 433(7022):128–132, 2005.

    Article  CAS  PubMed  Google Scholar 

  27. L. E. Kavraki, P. Švestka, J.-C. Latombe, and M. H. Overmars. Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Automation: A Publication of the IEEE Robotics and Automation Society, 12(4):566–580, 1996.

    Google Scholar 

  28. A. D. MacKerell, Jr. Empirical force fields for biological macromolecules: overview and issues. Journal of Computational Chemistry, 25(13):1584–1604, 2004.

    Article  CAS  PubMed  Google Scholar 

  29. M. Zhang and L. E. Kavraki. A new method for fast and accurate computation of molecular conformations. Journal of Chemical Information and Computer Sciences, 42:64–70, 2002.

    CAS  PubMed  Google Scholar 

  30. S. Sun, P. D. Thomas, and K. A. Dill. A simple protein folding algorithm using a binary code and secondary structure constraints. Protein Engineering, 8(8):769–778, 1995.

    Article  CAS  PubMed  Google Scholar 

  31. H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E. Kavraki, and S. Thrun. Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT Press, 2005.

    Google Scholar 

  32. J.-C. Latombe. Robot Motion Planning, chapter 7, pages 295–353. Kluwer, Dordrecht; Boston, 1991.

    Google Scholar 

  33. S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning. The International Journal of Robotics Research, 20(5):378–400, 2001.

    Article  Google Scholar 

  34. D. Hsu, J.-C. Latombe, and R. Motwani. Path planning in expansive configuration spaces. International Journal of Computational Geometry and Applications, 9(4–5):495–512, 1999.

    Google Scholar 

  35. A. Ladd and L. E. Kavraki. Fast exploration for robots with dynamics. In Workshop on the Algorithmic Foundations of Robotics, 2004.

    Google Scholar 

  36. M. Moll, M. D. Schwarz, A. Heath, and L. E. Kavraki. On flexible docking using expansive search. Technical Report 04-443, Rice University, Houston, TX, 2004.

    Google Scholar 

  37. J. Cortés, T. Siméon, V. R. de Angulo, D. Guieysse, M. Remauld-Siméon, and V. Tran. A path planning approach for computing large-amplitude motions of flexible molecules. Bioinformatics, 21 Suppl. 1:i116–i125,2005.

    Article  Google Scholar 

  38. T. J. Brunette and O. Brock. Improving protein structure prediction with model-based search. Bioinformatics, 21 Suppl. 1:i66–i74, 2005.

    Article  Google Scholar 

  39. T. J. Brunette and O. Brock. Model-based search to determine minima in molecular energy landscapes. Technical Report 04-48, Dept. of Computer Science, University of Massachusetts, Amherst, MA, 2005.

    Google Scholar 

  40. J. Cortés, T. Siméon, M. Remaud-Siméon, and V. Tran. Geometric algorithms for the conformational analysis of long protein loops. Journal of Computational Chemistry, 25(7):956–967, 2004.

    Article  PubMed  Google Scholar 

  41. A. P. Singh, J.-C. Latombe, and D. L. Brutlag. A motion planning approach to flexible ligand binding. In Proceedings of Seventh International Conference on Intelligent Systems for Molecular Biology (ISMB), pages 252–261, 1999.

    Google Scholar 

  42. G. N. Ramachandran and V. Sasisekharan. Conformation of polypeptides and proteins. Advances in Protein Chemistry, 23:283–438, 1968.

    Article  CAS  PubMed  Google Scholar 

  43. T. H. Cormen, C. E. Leiserson, R. R. Rivest, and C. Stein. Introduction to Algorithms. McGraw-Hill, second edition, 1990.

    Google Scholar 

  44. R. Du, V. Pande, A. Y. Grosberg, T. Tanaka, and E. Shakhnovich. On the transition coordinate for protein folding. The Journal of Chemical Physics, 108:334–350, 1998.

    Article  CAS  Google Scholar 

  45. H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, and P. E. Bourne. The protein data bank. Nucleic Acids Research, 28:235–242, 2000.

    Article  CAS  PubMed  Google Scholar 

  46. S. O. Garbuzynskiy, A. V. Finkelstein, and O. V. Galzitskaya. Outlining folding nuclei in globular proteins. Journal of Molecular Biology, 336:509–525, 2004.

    Article  CAS  PubMed  Google Scholar 

  47. A. Fersht. Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding. W.H. Freeman & Company, 1999.

    Google Scholar 

  48. M. Shirts and V. S. Pande. Screen savers of the world unite Science, 290:1903–1904, 2000.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc

About this protocol

Cite this protocol

Moll, M., Schwarz, D., Kavraki, L.E. (2008). Roadmap Methods for Protein Folding. In: Zaki, M.J., Bystroff, C. (eds) Protein Structure Prediction. Methods in Molecular Biology™, vol 413. Humana Press. https://doi.org/10.1007/978-1-59745-574-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-574-9_9

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-752-5

  • Online ISBN: 978-1-59745-574-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics