Skip to main content

The Pros and Cons of Predicting Protein Contact Maps

  • Protocol
Book cover Protein Structure Prediction

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 413))

Summary

Is there any reason why we should predict contact maps (CMs)? The question is one of the several ‘NP-hard’ questions that arise when striving for feasible solutions of the protein folding problem. At some point, theoreticians started thinking that a possible alternative to an unsolvable problem was to predict a simplified version of the protein structure: a CM. In this chapter, we will clarify that whenever problems are difficult they remain at least as difficult in the process of finding approximate solutions or heuristic approaches. However, humans rarely give up, as it is stimulating to find solutions in the face of difficulties. CMs of proteins are an interesting and useful representation of protein structures. These two-dimensional representations capture all the important features of a protein fold. We will review the general characteristics of CMs and the methods developed to study and predict them, and we will highlight some new ideas on how to improve CM predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Havel, T. F. (1998). Distance geometry: theory, algorithms, and chemical applications. Encyclopedia of Computational Chemistry. John Wiley & Sons, New York.

    Google Scholar 

  2. Vendruscolo, M. and Domany, E. (1999). Protein folding using contact maps. arXiv cond-mat, 9901215.

    Google Scholar 

  3. Bohr, J., Bohr, H., Brunak, S., Cotterill, R. M., Fredholm, H., Lautrup, B. and Petersen, S. B. (1993). Protein structures from distance inequalities. Journal of Molecular Biology 231, 861–869.

    Article  CAS  PubMed  Google Scholar 

  4. Fariselli, P., Olmea, O., Valencia, A. and Casadio, R. (2001). Progress in predicting inter-residue contacts of proteins with neural networks and correlated mutations. Proteins Suppl 5, 157–162.

    Google Scholar 

  5. Galaktionov, S. G. and Marshall, G. R. (1994). 27th Annual Hawaii International Conference on System Sciences (HICSS-27), Maui, Hawaii.

    Google Scholar 

  6. Baldi, P. and Brunak S. (2001). Bioinformatics: The Machine Learning Approach, A Bradford Book, Second edition. MIT Press, Cambridge.

    Google Scholar 

  7. Goldman, D., Istrail, S. and Papadimitriou, C. (1999). Algorithmic aspects of protein structure similarity. Proceedings of the 40th IEEE Symposium on Foundations of Computer Science, New York, (USA), 512–522.

    Google Scholar 

  8. Fariselli, P., Olmea, O., Valencia, A. and Casadio, R. (2001). Prediction of contact maps with neural networks and correlated mutations. Protein Engineering 14, 835–843.

    Article  CAS  PubMed  Google Scholar 

  9. Porto, M., Bastolla, U., Roman, H. E. and Vendruscolo, M. (2004). Reconstruction of protein structures from a vectorial representation. Physical Review Letters 92, 218101.

    Article  PubMed  Google Scholar 

  10. Pollastri, G., Baldi, P., Fariselli, P. and Casadio, R. (2002). Prediction of coordination number and relative solvent accessibility in proteins. Proteins 47(2), 142–153.

    Article  CAS  PubMed  Google Scholar 

  11. Goebel, U., Sander, C., Schneider, R. and Valencia, A. (1994). Correlated mutations and residue contacts in proteins. Proteins 18, 309–317.

    Article  CAS  Google Scholar 

  12. Olmea, O. and Valencia, A. (1997). Improving contact predictions by the combination of correlated mutations and other sources of sequence information. Folding & Design 2, S25–S32.

    Article  CAS  Google Scholar 

  13. Fariselli, P. and Casadio, R. (1999). A neural network based predictor of residue contacts in proteins. Protein Engineering 12, 15–21.

    Article  CAS  PubMed  Google Scholar 

  14. Punta, M. and Rost, B. (2005). PROFcon: novel prediction of long-range contacts. Bioinformatics 21, 2960–2968.

    Article  CAS  PubMed  Google Scholar 

  15. Bystroff, C. and Shao, Y. (2002). Fully automated ab initio protein structure prediction using I-SITES, HMMSTR and ROSETTA. Bioinformatics 18 Suppl 1, S54–S61.

    PubMed  Google Scholar 

  16. Zhao, Y. and Karypis, G. (2003). 3rd IEEE International Conference on Bioinformatics and Bioengineering (BIBE).

    Google Scholar 

  17. MacCallum, R. M. (2004). Striped sheets and protein contact prediction. Bioinformatics 20 Suppl 1, I224–I231.

    Article  CAS  PubMed  Google Scholar 

  18. Pollastri, G. and Baldi, P. (2002). Prediction of contact maps by GIOHMMs and recurrent neural networks using lateral propagation from all four cardinal corners. Bioinformatics 18 Suppl 1, S62–S70.

    PubMed  Google Scholar 

  19. Vullo, A., Walsh, I. and Pollastri, G. (2006). A two-stage approach for improved prediction of residue contact maps. BMC Bioinformatics 7, 180.

    Article  PubMed  Google Scholar 

  20. Eyrich, V. A., Przybylski, D., Koh, I. Y., Grana, O., Pazos, F., Valencia, A. and Rost, B. (2003). CAFASP3 in the spotlight of EVA. Proteins 53 Suppl 6, 548–560.

    Article  CAS  PubMed  Google Scholar 

  21. Grana, O., Baker, D., MacCallum, R. M., Meiler, J., Punta, M., Rost, B., Tress, M. L. and Valencia, A. (2005). CASP6 assessment of contact prediction. Proteins 61 Suppl 7, 214–224.

    Article  CAS  PubMed  Google Scholar 

  22. Barabasi, A. L. (2003). Linked: The New Science of Networks, Perseus Publishing, Cambridge, Massachusetts.

    Google Scholar 

  23. Watts, D. J. and Strogatz, S. H. (1998). Collective dynamics of ’small-world’ networks. Nature 393, 440–442.

    Article  CAS  PubMed  Google Scholar 

  24. Vendruscolo, M., Dokholyan, N. V., Paci, E. and Karplus, M. (2002). Small-world view of the amino acids that play a key role in protein folding. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics 65, 061910.

    Article  CAS  PubMed  Google Scholar 

  25. Watts, D. J. (1999). Small Worlds. The Dynamics of Networks Between Order and Randomness, Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  26. Vendruscolo, M. and Domany, E. (1998). Efficient dynamics in the space of contact maps. Folding & Design 3, 329–336.

    Article  CAS  Google Scholar 

  27. Andricioaei, I., Voter, A. F. and Straub, J. E. (2001). Smart Darting Monte Carlo. The Journal of Chemical Physics 114, 6994–7000.

    Article  CAS  Google Scholar 

  28. Atilgan, A. R., Akan, P. and Baysal, C. (2004). Small-world communication of residues and significance for protein dynamics. Biophysical Journal 86, 85–91.

    Article  CAS  PubMed  Google Scholar 

  29. Bagler, G. and Sinha, S. (2005). Network properties of protein structures. Physica A 346, 27–33.

    Article  CAS  Google Scholar 

  30. Greene, L. H. and Higman, V. A. (2003). Uncovering network systems within protein structures. Journal of Molecular Biology 334, 781–791.

    Article  CAS  PubMed  Google Scholar 

  31. Barabasi, A. L. and Albert, R. (1999). Emergence of scaling in random networks. Science 286, 509–512.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank MIUR for the following grants: PNR-2003 grant delivered to PF, a PNR 2001–2003 (FIRB art.8) and PNR 2003 projects (FIRB art.8) on Bioinformatics for Genomics and Proteomics and LIBI-Laboratorio Internazionale di BioInformatica, both delivered to RC. This work was also supported by the Biosapiens Network of Excellence project (a grant of the European Unions VI Framework Programme).

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc

About this protocol

Cite this protocol

Bartoli, L., Capriotti, E., Fariselli, P., Martelli, P.L., Casadio, R. (2008). The Pros and Cons of Predicting Protein Contact Maps. In: Zaki, M.J., Bystroff, C. (eds) Protein Structure Prediction. Methods in Molecular Biology™, vol 413. Humana Press. https://doi.org/10.1007/978-1-59745-574-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-574-9_8

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-752-5

  • Online ISBN: 978-1-59745-574-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics