Skip to main content

Molecular Dynamics Simulations of Protein Folding

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 413))

Summary

I illustrate the use of the replica exchange molecular dynamics (REMD) algorithm to study the folding of a small (57 amino acids) protein that folds into a three-helix bundle, protein A. The REMD is a trivially parallel method that uses multiple copies of the system of interest to study the canonical ensemble equilibrium properties. Each replica represents a different thermodynamic state, usually at different temperatures. This method enhances the configurational sampling of proteins and allows us to study folding in simulations that are much shorter than the folding timescale for the system at ambient temperature. I show that using REMD and the Amber force field, I can obtain stable configurations of protein A whose backbone root mean square distance (RMSD) is within 0.17 nm of the nuclear magnetic resonance (NMR)-determined structure without biasing the system toward the folded structure. The simulations are done in explicit solvent and starting from nearly extended configurations. This calculation shows that currently available force fields and enhanced sampling methods perform reasonably well in describing the folded structure of small proteins.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Y. Sugita and Y. Okamoto. Replica-exchange molecular dynamics methods for protein folding. Chem. Phys. Lett., 314:141–151, 1999.

    Article  CAS  Google Scholar 

  2. U.H.E. Hansmann. Parallel tempering algorithm for conformational studies of biological molecules. Chem. Phys. Lett., 281:140–150, 1997.

    Article  CAS  Google Scholar 

  3. K. Hukushima and K. Nemoto. Exchange Monte Carlo method and application to spin glass simulation. J. Phys. Soc. Japan, 65:1604–1608, 1996.

    Article  CAS  Google Scholar 

  4. A.F. Voter. Parallel replica method for dynamics of infrequent events. Phys. Rev. B, 57:R13985–R13988, 1998.

    Article  CAS  Google Scholar 

  5. M.R. Shirts and V.S. Pande. Mathematical analysis of coupled parallel simulation. Phys. Rev. Lett., 86:4983–4987, 2001.

    Article  CAS  PubMed  Google Scholar 

  6. C.D. Snow, E.J. Sorin, Y.M. Rhee, and V.S. Pande. How well can simulation predict protein folding kinetics and thermodynamics? Annu. Rev. Biophys. Biomol. Struct., 34:43–69, 2005.

    Article  CAS  PubMed  Google Scholar 

  7. H. Nymeyer, S. Gnanakaran, and A.E. Garcia. Atomic simulations of protein folding, using the replica exchange algorithm. Methods in Enzymol., 383:119–149, 2004.

    Article  CAS  Google Scholar 

  8. D. Paschek and A.E. Garcia. Reversible temperature and pressure denaturation of a protein fragment: a replica exchange molecular dynamics simulation study. Phys. Rev. Lett., 93:238105, 2004.

    Article  PubMed  Google Scholar 

  9. D. Paschek, S. Gnanakaran, and A.E. Garcia. Simulations of the pressure and temperature unfolding of an alpha-helical peptide. Proc. Natl. Acad. Sci. USA, 102:6765–6770, 2005.

    Article  CAS  PubMed  Google Scholar 

  10. H. Nymeyer and A.E. Garcia. Simulation of the folding equilibrium of alpha-helical peptides: a comparison of the generalized Born approximation with explicit solvent. Proc. Natl. Acad. Sci. USA, 100:13934–13939, 2003.

    Article  CAS  PubMed  Google Scholar 

  11. J. Skolnick, A. Kolinski, D. Kihara, M. Betancourt, P. Rotkiewicz, and M. Boniecki. Ab initio protein structure prediction via a combination of threading, lattice folding, clustering, and structure refinement. Proteins, Supp. 5:149–156, 2001.

    Article  Google Scholar 

  12. W.D. Cornell, P. Cieplak, C.I. Bayly, I.R. Gouls, K.M. Merz Jr., D.M. Fergueson, D.C. Spellmeyer, T. Fox, J.W. Caldwell, and P.A. Kollman. A second generation force field for the simulation of proteins, nucleic acids and organic molecules. J. Am. Chem. Soc., 117:5179–5197, 1995.

    Article  CAS  Google Scholar 

  13. M.R. Shirts, J.W. Pitera, W.C. Swope, and V.S. Pande. Extremely precise free energy calculations of amino acid chain analogs: comparison of common molecular mechanics force fields for proteins. J. Chem. Phys., 119(11):5740–5761, 2003.

    Article  CAS  Google Scholar 

  14. E.J. Sorin, Y.M. Rhee, M.R. Shirts, and V.S. Pande. The salvation interface is a determining factor in peptide conformational preferences. J. Mol. Biol., 356(1):248–256, 2006.

    Article  CAS  PubMed  Google Scholar 

  15. W.L. Jorgensen, D.S. Maxwell, and J. Tirado-Rives. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc., 118:11225–11236, 1996.

    Article  CAS  Google Scholar 

  16. S. Nosé. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys., 81:511–519, 1984.

    Article  Google Scholar 

  17. W.G. Hoover. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A, 31:1695–1697, 1984.

    Article  Google Scholar 

  18. U. Essman, L. Perera, M.L. Berkowitz, T.A. Darden, H. Lee, and L.G. Pedersen. A smooth particle mesh Ewald method. J. Chem. Phys., 103:8577–8593, 1995.

    Article  Google Scholar 

  19. H. Gouda, H. Torrigoe, A. Saito, M. Arata, and I. Shimada. Three dimensional solution structure of the b-domain of staphylococcal protein-a-comparisons of the solution and crystal-structures. Biochemistry, 31:9665–9672, 1992.

    Article  CAS  PubMed  Google Scholar 

  20. K. Witte, J. Skolnick, and C. Wong. A synthetic retrotransition (backward reading) sequence of the right-handed three-helix bundle domain (10–53) of protein a show similarity in conformation as predicted by computation. J. Am. Chem. Soc., 120:13042, 1998.

    Google Scholar 

  21. S. Sato, T.L. Religa, V. Daggett, and A.R. Fersht. Testing protein folding simulations by experiment: B domain of protein a. Proc. Natl. Acad. Sci. USA, 101:6952–6956, 2004.

    Article  CAS  PubMed  Google Scholar 

  22. E.M. Boczko and C.L. Brooks, III. First-principles calculation of the folding free energy of a three-helix bundle protein. Science, 269:393–396, 1995.

    Article  CAS  PubMed  Google Scholar 

  23. A.E. Garcia and J.N. Onuchic. Folding a protein in a computer: an atomic description of the folding/unfolding of protein A. Proc. Natl. Acad. Sci. USA, 100:13898–13903, 2003.

    Article  CAS  PubMed  Google Scholar 

  24. D.O. Alonso and V. Daggett. Staphylococcal protein a: unfolding pathways, unfolded states, and differences between the B and E domains. Proc. Natl. Acad. Sci. USA, 97:133–138, 2000.

    Google Scholar 

  25. W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, and M.L. Klein. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys., 79:926–935, 1983.

    Article  CAS  Google Scholar 

  26. J.P. Ryckaert, G. Ciccotti, and H.J.C. Berendsen. Numerical integration of the Cartesian equations of motions of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys., 23:327–341, 1977.

    Article  CAS  Google Scholar 

  27. S. Miyamoto and P.A. Kollman. SETTLE: an analytical version of the SHAKE and RATTLE algorithms for rigid water models. J. Comput. Chem., 13:952–962, 1992.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author gratefully acknowledges support by the National Science Foundation MCB-0543769. The author thanks D. Paschek, H. Herce, and R.~Day for valuable discussions.

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc

About this protocol

Cite this protocol

Garcia, A.E. (2008). Molecular Dynamics Simulations of Protein Folding. In: Zaki, M.J., Bystroff, C. (eds) Protein Structure Prediction. Methods in Molecular Biology™, vol 413. Humana Press. https://doi.org/10.1007/978-1-59745-574-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-574-9_12

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-752-5

  • Online ISBN: 978-1-59745-574-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics