Skip to main content

Rat Models of Cardiac Insulin Resistance

  • Protocol
Vascular Biology Protocols

Part of the book series: Methods in Molecular Medicineā„¢ ((MIMM,volume 139))

Summary

Cardiovascular disease is the leading cause of death in the industrialized world. Diabetes is a major risk factor for cardiovascular disease. Unchecked diabetes can also lead to renal failure, blindness, heart attack, stroke, and amputation. The focus of this chapter will be to review the different mechanisms of insulin resistance (IR)/type 2 diabetes and various animal models used to study cardiac changes during these conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. King, H., Aubert, R.E., and Herman, W.H. (1998) Global burden of diabetes, 1995ā€“2025: prevalence, numerical estimates, and projections. Diabetes Care 21, 1414ā€“1431.

    CASĀ  PubMedĀ  Google ScholarĀ 

  2. Batstra, M.R., Aanstoot, H.J., and Herbrink, P. (2001) Prediction and diagnosis of type 1 diabetes using beta-cell autoantibodies. Clin. Lab. 47, 497ā€“507.

    CASĀ  PubMedĀ  Google ScholarĀ 

  3. Kannel, W.B., and McGee, D.L. (1979) Diabetes and cardiovascular disease. The Framingham study. JAMA 241, 2035ā€“2038.

    CASĀ  PubMedĀ  Google ScholarĀ 

  4. Stamler, J., Vaccaro, O., Neaton, J.D., and Wentworth, D. (1993) Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial. Diabetes Care 16, 434ā€“444.

    CASĀ  PubMedĀ  Google ScholarĀ 

  5. Schernthaner, G. (1996) Cardiovascular mortality and morbidity in type-2 diabetes mellitus. Diabetes Res. Clin. Pract. 31(Suppl), S3ā€“S13.

    PubMedĀ  Google ScholarĀ 

  6. Rodrigues, B., Cam, M.C., and McNeill, J.H. (1995) Myocardial substrate metabolism: implications for diabetic cardiomyopathy. J. Mol. Cell Cardiol. 27, 169ā€“179.

    CASĀ  PubMedĀ  Google ScholarĀ 

  7. Saltiel, A.R., and Kahn, C.R. (2001) Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414, 799ā€“806.

    CASĀ  PubMedĀ  Google ScholarĀ 

  8. Hall, J.E., Brands, M.W., Hildebrandt, D.A., and Mizelle, H.L. (1992) Obesity-associated hypertension. Hyperinsulinemia and renal mechanisms. Hypertension 19, I45ā€“I55.

    CASĀ  PubMedĀ  Google ScholarĀ 

  9. Del Prato, S., Riccio, A., Vigili de Kreutzenberg, S., et al. (1993) Mechanisms of fasting hypoglycemia and concomitant insulin resistance in insulinoma patients. Metabolism 42, 24ā€“29.

    CASĀ  PubMedĀ  Google ScholarĀ 

  10. Vigili de Kreutzenberg, S., Riccio, A., Dorella, M., et al. (1995) Surgical removal of insulinoma restores glucose recovery from hypoglycaemia but does not normalize insulin action. Eur. J. Clin. Invest. 25, 360ā€“367.

    CASĀ  PubMedĀ  Google ScholarĀ 

  11. Pratley, R.E., and Weyer, C. (2001) The role of impaired early insulin secretion in the pathogenesis of type II diabetes mellitus. Diabetologia 44, 929ā€“945.

    CASĀ  PubMedĀ  Google ScholarĀ 

  12. Patti, M.E., and Kahn, C.R. (1998) The insulin receptorā€“a critical link in glucose homeostasis and insulin action. J. Basic Clin. Physiol. Pharmacol. 9, 89ā€“109.

    CASĀ  PubMedĀ  Google ScholarĀ 

  13. Krook, A., Kumar, S., Laing, I., Boulton, A.J., Wass, J.A., and Oā€™Rahilly, S. (1994) Molecular scanning of the insulin receptor gene in syndromes of insulin resistance. Diabetes 43, 357ā€“368.

    CASĀ  PubMedĀ  Google ScholarĀ 

  14. Krook, A., Wallberg-Henriksson, H., and Zierath, J.R. (2004) Sending the signal: molecular mechanisms regulating glucose uptake. Med. Sci. Sports Exerc. 36, 1212ā€“1217.

    CASĀ  PubMedĀ  Google ScholarĀ 

  15. White, M.F. (2002) IRS proteins and the common path to diabetes. Am. J. Physiol. Endocrinol. Metab. 283, E413ā€“E422.

    CASĀ  PubMedĀ  Google ScholarĀ 

  16. Sesti, G., Federici, M., Hribal, M.L., Lauro, D., Sbraccia, P., and Lauro, R. (2001) Defects of the insulin receptor substrate (IRS) system in human metabolic disorders. FASEB J. 15, 2099ā€“2111.

    CASĀ  PubMedĀ  Google ScholarĀ 

  17. Garofalo, R.S., Orena, S.J., Rafidi, K., et al. (2003) Severe diabetes, age-dependent loss of adipose tissue, and mild growth deficiency in mice lacking Akt2/PKB beta. J. Clin. Invest. 112, 197ā€“208.

    CASĀ  PubMedĀ  Google ScholarĀ 

  18. Cross, D.A., Alessi, D.R., Cohen, P., Andjelkovich, M., and Hemmings, B.A. (1995) Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378, 785ā€“789.

    CASĀ  PubMedĀ  Google ScholarĀ 

  19. Lajoie, C., Calderone, A., Trudeau, F., et al. (2004) Exercise training attenuated the PKB and GSK-3 dephosphorylation in the myocardium of ZDF rats. J. Appl. Physiol. 96, 1606ā€“1612.

    CASĀ  PubMedĀ  Google ScholarĀ 

  20. Nakae, J., Park, B.C., and Accili, D. (1999) Insulin stimulates phosphorylation of the forkhead transcription factor FKHR on serine 253 through a Wortmannin-sensitive pathway. J. Biol. Chem. 274, 15982ā€“15985.

    CASĀ  PubMedĀ  Google ScholarĀ 

  21. Nakae, J., Kitamura, T., Silver, D.L., and Accili, D. (2001) The forkhead transcription factor Foxo1 (Fkhr) confers insulin sensitivity onto glucose-6-phosphatase expression. J. Clin. Invest. 108, 1359ā€“1367.

    CASĀ  PubMedĀ  Google ScholarĀ 

  22. Altomonte, J., Richter, A., Harbaran, S., et al. (2003) Inhibition of Foxo1 function is associated with improved fasting glycemia in diabetic mice. Am. J. Physiol. Endocrinol. Metab. 285, E718ā€“E728.

    CASĀ  PubMedĀ  Google ScholarĀ 

  23. Kitamura, T., Nakae, J., Kitamura, Y., et al. (2002) The forkhead transcription factor Foxo1 links insulin signaling to Pdx1 regulation of pancreatic beta cell growth. J. Clin. Invest. 110, 1839ā€“1847.

    CASĀ  PubMedĀ  Google ScholarĀ 

  24. Ogawa, W., Matozaki, T., and Kasuga, M. (1998) Role of binding proteins to IRS-1 in insulin signalling. Mol. Cell. Biochem. 182, 13ā€“22.

    CASĀ  PubMedĀ  Google ScholarĀ 

  25. Khan, A.H., and Pessin, J.E. (2002) Insulin regulation of glucose uptake: a complex interplay of intracellular signalling pathways. Diabetologia 45, 1475ā€“1483.

    CASĀ  PubMedĀ  Google ScholarĀ 

  26. Molero, J.C., Jensen, T.E., Withers, P.C., et al. (2004) c-Cbl-deficient mice have reduced adiposity, higher energy expenditure, and improved peripheral insulin action. J. Clin. Invest. 114, 1326ā€“1333.

    CASĀ  PubMedĀ  Google ScholarĀ 

  27. Stumvoll, M., Goldstein, B.J., and van Haeften, T.W. (2005) Type 2 diabetes: principles of pathogenesis and therapy. Lancet 365, 1333ā€“1346.

    CASĀ  PubMedĀ  Google ScholarĀ 

  28. Pierce, M., Keen, H., and Bradley, C. (1995) Risk of diabetes in offspring of parents with non-insulin-dependent diabetes. Diabet. Med. 12, 6ā€“13.

    CASĀ  PubMedĀ  Google ScholarĀ 

  29. Tattersal, R.B., and Fajans, S.S. (1975) Prevalence of diabetes and glucose intolerance in 199 offspring of thirty-seven conjugal diabetic parents. Diabetes 24, 452ā€“462.

    CASĀ  PubMedĀ  Google ScholarĀ 

  30. Kaprio, J., Tuomilehto, J., Koskenvuo, M., et al. (1992) Concordance for type 1 (insulin-dependent) and type 2 (non-insulin-dependent) diabetes mellitus in a population-based cohort of twins in Finland. Diabetologia 35, 1060ā€“1067.

    CASĀ  PubMedĀ  Google ScholarĀ 

  31. Newman, B., Selby, J.V., King, M.C., Slemenda, C., Fabsitz, R., and Friedman, G.D. (1987) Concordance for type 2 (non-insulin-dependent) diabetes mellitus in male twins. Diabetologia 30, 763ā€“768.

    CASĀ  PubMedĀ  Google ScholarĀ 

  32. Boden, G. (1997) Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes 46, 3ā€“10.

    CASĀ  PubMedĀ  Google ScholarĀ 

  33. Boden, G. (2002) Interaction between free fatty acids and glucose metabolism. Curr. Opin. Clin. Nutr. Metab. Care 5, 545ā€“549.

    CASĀ  PubMedĀ  Google ScholarĀ 

  34. Dresner, A., Laurent, D., Marcucci, M., et al. (1999) Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. J. Clin. Invest. 103, 253ā€“259.

    CASĀ  PubMedĀ  Google ScholarĀ 

  35. Wrede, C.E., Dickson, L.M., Lingohr, M.K., Briaud, I., and Rhodes, C.J. (2003) Fatty acid and phorbol ester-mediated interference of mitogenic signaling via novel protein kinase C isoforms in pancreatic beta-cells (INS-1). J. Mol. Endocrinol. 30, 271ā€“286.

    CASĀ  PubMedĀ  Google ScholarĀ 

  36. Sinha, S., Perdomo, G., Brown, N.F., and Oā€™Doherty, R.M. (2004) Fatty acid-induced insulin resistance in L6 myotubes is prevented by inhibition of activation and nuclear localization of nuclear factor kappa B. J. Biol. Chem. 279, 41294ā€“41301.

    CASĀ  PubMedĀ  Google ScholarĀ 

  37. Evans, J.L., Goldfine, I.D., Maddux, B.A., and Grodsky, G.M. (2002) Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr. Rev. 23, 599ā€“622.

    CASĀ  PubMedĀ  Google ScholarĀ 

  38. Lupi, R., Dotta, F., Marselli, L., et al. (2002) Prolonged exposure to free fatty acids has cytostatic and pro-apoptotic effects on human pancreatic islets: evidence that beta-cell death is caspase mediated, partially dependent on ceramide pathway, and Bcl-2 regulated. Diabetes 51, 1437ā€“1442.

    CASĀ  PubMedĀ  Google ScholarĀ 

  39. El-Assaad, W., Buteau, J., Peyot, M.L., et al. (2003) Saturated fatty acids synergize with elevated glucose to cause pancreatic beta-cell death. Endocrinology 144, 4154ā€“4163.

    CASĀ  PubMedĀ  Google ScholarĀ 

  40. Kelley, D.E., He, J., Menshikova, E.V., and Ritov, V.B. (2002) Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 51, 2944ā€“2950.

    CASĀ  PubMedĀ  Google ScholarĀ 

  41. Short, K.R., Nair, K.S., and Stump, C.S. (2004) Impaired mitochondrial activity and insulin-resistant offspring of patients with type 2 diabetes. N. Engl. J. Med. 350, 2419ā€“2421; author reply 2419ā€“2421.

    CASĀ  PubMedĀ  Google ScholarĀ 

  42. Patti, M.E., Butte, A.J., Crunkhorn, S., et al. (2003) Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1. Proc. Natl. Acad. Sci. U. S. A. 100, 8466ā€“8471.

    CASĀ  PubMedĀ  Google ScholarĀ 

  43. Mootha, V.K., Lindgren, C.M., Eriksson, K.F., et al. (2003) PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267ā€“273.

    CASĀ  PubMedĀ  Google ScholarĀ 

  44. Ferroni, P., Basili, S., Falco, A., and Davi, G. (2004) Inflammation, insulin resistance, and obesity. Curr. Atheroscler. Rep. 6, 424ā€“431.

    PubMedĀ  Google ScholarĀ 

  45. Pirola, L., Johnston, A.M., and Van Obberghen, E. (2004) Modulation of insulin action. Diabetologia 47, 170ā€“184.

    CASĀ  PubMedĀ  Google ScholarĀ 

  46. Hotamisligil, G.S. (2000) Molecular mechanisms of insulin resistance and the role of the adipocyte. Int. J. Obes. Relat. Metab. Disord. 24(Suppl 4), S23ā€“S27.

    CASĀ  PubMedĀ  Google ScholarĀ 

  47. Senn, J.J., Klover, P.J., Nowak, I.A., et al. (2003) Suppressor of cytokine signaling-3 (SOCS-3), a potential mediator of interleukin-6-dependent insulin resistance in hepatocytes. J. Biol. Chem. 278, 13740ā€“13746.

    CASĀ  PubMedĀ  Google ScholarĀ 

  48. Yazdani-Biuki, B., Stelzl, H., Brezinschek, H.P., et al. (2004) Improvement of insulin sensitivity in insulin resistant subjects during prolonged treatment with the anti-TNF-alpha antibody infliximab. Eur. J. Clin. Invest. 34, 641ā€“642.

    CASĀ  PubMedĀ  Google ScholarĀ 

  49. Shanmugam, N., Reddy, M.A., Guha, M., and Natarajan, R. (2003) High glucose-induced expression of proinflammatory cytokine and chemokine genes in monocytic cells. Diabetes 52, 1256ā€“1264.

    CASĀ  PubMedĀ  Google ScholarĀ 

  50. van Exel, E., Gussekloo, J., de Craen, A.J., Frolich, M., Bootsma-Van Der Wiel, A., and Westendorp, R.G. (2002) Low production capacity of interleukin-10 associates with the metabolic syndrome and type 2 diabetes: the Leiden 85-Plus Study. Diabetes 51, 1088ā€“1092.

    PubMedĀ  Google ScholarĀ 

  51. Pirola, L., Bonnafous, S., Johnston, A.M., Chaussade, C., Portis, F., and Van Obberghen, E. (2003) Phosphoinositide 3-kinase-mediated reduction of insulin receptor substrate-1/2 protein expression via different mechanisms contributes to the insulin-induced desensitization of its signaling pathways in L6 muscle cells. J. Biol. Chem. 278, 15641ā€“15651.

    CASĀ  PubMedĀ  Google ScholarĀ 

  52. Rui, L., Fisher, T.L., Thomas, J., and White, M.F. (2001) Regulation of insulin/insulin-like growth factor-1 signaling by proteasome-mediated degradation of insulin receptor substrate-2. J. Biol. Chem. 276, 40362ā€“40367.

    CASĀ  PubMedĀ  Google ScholarĀ 

  53. Brownlee, M. (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414, 813ā€“820.

    CASĀ  PubMedĀ  Google ScholarĀ 

  54. Robertson, R.P., Harmon, J., Tran, P.O., Tanaka, Y., and Takahashi, H. (2003) Glucose toxicity in beta-cells: type 2 diabetes, good radicals gone bad, and the glutathione connection. Diabetes 52, 581ā€“587.

    CASĀ  PubMedĀ  Google ScholarĀ 

  55. Singh, R., Barden, A., Mori, T., and Beilin, L. (2001) Advanced glycation end-products: a review. Diabetologia 44, 129ā€“146.

    CASĀ  PubMedĀ  Google ScholarĀ 

  56. Abdel-Wahab, Y.H., Oā€™Harte, F.P., Ratcliff, H., McClenaghan, N.H., Barnett, C.R., and Flatt, P.R. (1996) Glycation of insulin in the islets of Langerhans of normal and diabetic animals. Diabetes 45, 1489ā€“1496.

    CASĀ  PubMedĀ  Google ScholarĀ 

  57. Lindsay, J.R., McKillop, A.M., Mooney, M.H., Oā€™Harte, F.P., Bell, P.M., and Flatt, P.R. (2003) Demonstration of increased concentrations of circulating glycated insulin in human type 2 diabetes using a novel and specific radioimmunoassay. Diabetologia 46, 475ā€“478.

    CASĀ  PubMedĀ  Google ScholarĀ 

  58. Miele, C., Riboulet, A., Maitan, M.A., et al. (2003) Human glycated albumin affects glucose metabolism in L6 skeletal muscle cells by impairing insulin-induced insulin receptor substrate (IRS) signaling through a protein kinase C alpha-mediated mechanism. J. Biol. Chem. 278, 47376ā€“47387.

    CASĀ  PubMedĀ  Google ScholarĀ 

  59. Rossetti, L. (2000) Perspective: hexosamines and nutrient sensing. Endocrinology 141, 1922ā€“1925.

    CASĀ  PubMedĀ  Google ScholarĀ 

  60. Vosseller, K., Wells, L., Lane, M.D., and Hart, G.W. (2002) Elevated nucleocytoplasmic glycosylation by O-GlcNAc results in insulin resistance associated with defects in Akt activation in 3T3-L1 adipocytes. Proc. Natl. Acad. Sci. U. S. A. 99, 5313ā€“5318.

    CASĀ  PubMedĀ  Google ScholarĀ 

  61. Chen, G., Liu, P., Thurmond, D.C., and Elmendorf, J.S. (2003) Glucosamine-induced insulin resistance is coupled to O-linked glycosylation of Munc18c. FEBS Lett. 534, 54ā€“60.

    CASĀ  PubMedĀ  Google ScholarĀ 

  62. Parker, G.J., Lund, K.C., Taylor, R.P., and McClain, D.A. (2003) Insulin resistance of glycogen synthase mediated by o-linked N-acetylglucosamine. J. Biol. Chem. 278, 10022ā€“10027.

    CASĀ  PubMedĀ  Google ScholarĀ 

  63. Cooksey, R.C., Hebert, L.F., Jr., Zhu, J.H., Wofford, P., Garvey, W.T., and McClain, D.A. (1999) Mechanism of hexosamine-induced insulin resistance in transgenic mice overexpressing glutamine:fructose-6-phosphate amidotransferase: decreased glucose transporter GLUT4 translocation and reversal by treatment with thiazolidinedione. Endocrinology 140, 1151ā€“1157.

    CASĀ  PubMedĀ  Google ScholarĀ 

  64. Veerababu, G., Tang, J., Hoffman, R.T., et al. (2000) Overexpression of glutamine: fructose-6-phosphate amidotransferase in the liver of transgenic mice results in enhanced glycogen storage, hyperlipidemia, obesity, and impaired glucose tolerance. Diabetes 49, 2070ā€“2078.

    CASĀ  PubMedĀ  Google ScholarĀ 

  65. Monauni, T., Zenti, M.G., Cretti, A., et al. (2000) Effects of glucosamine infusion on insulin secretion and insulin action in humans. Diabetes 49, 926ā€“935.

    CASĀ  PubMedĀ  Google ScholarĀ 

  66. Munzberg, H., Bjornholm, M., Bates, S.H., and Myers, M.G., Jr. (2005) Leptin receptor action and mechanisms of leptin resistance. Cell Mol. Life Sci. 62, 642ā€“652.

    CASĀ  PubMedĀ  Google ScholarĀ 

  67. Adeghate, E. (2004) An update on the biology and physiology of resistin. Cell Mol. Life Sci. 61, 2485ā€“2496.

    CASĀ  PubMedĀ  Google ScholarĀ 

  68. Fasshauer, M., Paschke, R., and Stumvoll, M. (2004) Adiponectin, obesity, and cardiovascular disease. Biochimie 86, 779ā€“784.

    CASĀ  PubMedĀ  Google ScholarĀ 

  69. Yue, T.L., Bao, W., Gu, J.L., et al. (2005) Rosiglitazone treatment in Zucker diabetic fatty rats is associated with ameliorated cardiac insulin resistance and protection from ischemia/reperfusion-induced myocardial injury. Diabetes 54, 554ā€“562.

    CASĀ  PubMedĀ  Google ScholarĀ 

  70. Kolter, T., Uphues, I., and Eckel, J. (1997) Molecular analysis of insulin resistance in isolated ventricular cardiomyocytes of obese Zucker rats. Am. J. Physiol. 273, E59ā€“E67.

    CASĀ  PubMedĀ  Google ScholarĀ 

  71. Gibbs, E.M., Stock, J.L., McCoid, S.C., et al. (1995) Glycemic improvement in diabetic db/db mice by overexpression of the human insulin-regulatable glucose transporter (GLUT4). J. Clin. Invest. 95, 1512ā€“1518.

    CASĀ  PubMedĀ  Google ScholarĀ 

  72. Stanley, W.C., Lopaschuk, G.D., and McCormack, J.G. (1997) Regulation of energy substrate metabolism in the diabetic heart. Cardiovasc. Res. 34, 25ā€“33.

    CASĀ  PubMedĀ  Google ScholarĀ 

  73. Bronfman, M., Morales, M.N., and Orellana, A. (1988) Diacylglycerol activation of protein kinase C is modulated by long-chain acyl-CoA. Biochem. Biophys. Res. Commun. 152, 987ā€“992.

    CASĀ  PubMedĀ  Google ScholarĀ 

  74. Russ, M., and Eckel, J. (1995) Insulin action on cardiac glucose transport: studies on the role of protein kinase C. Biochem. Biophys. Acta. 1265, 73ā€“78.

    PubMedĀ  Google ScholarĀ 

  75. Schmitz-Peiffer, C., Craig, D.L., and Biden, T.J. (1999) Ceramide generation is sufficient to account for the inhibition of the insulin-stimulated PKB pathway in C2C12 skeletal muscle cells pretreated with palmitate. J. Biol. Chem. 274, 24202ā€“24210.

    CASĀ  PubMedĀ  Google ScholarĀ 

  76. Qi, D., Pulinilkunnil, T., An, D., et al. (2004) Single-dose dexamethasone induces whole-body insulin resistance and alters both cardiac fatty acid and carbohydrate metabolism. Diabetes 53, 1790ā€“1797.

    CASĀ  PubMedĀ  Google ScholarĀ 

  77. Randle, P.J., Garland, P.B., Hales, C.N., and Newsholme, E.A. (1963) The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1, 785ā€“789.

    CASĀ  PubMedĀ  Google ScholarĀ 

  78. Wang, P., Lloyd, S.G., Zeng, H., Bonen, A., and Chatham, J.C. (2005) Impact of altered substrate utilization on cardiac function in isolated hearts from Zucker diabetic fatty rats. Am. J. Physiol. Heart Circ. Physiol. 288, H2102ā€“H2110.

    CASĀ  PubMedĀ  Google ScholarĀ 

  79. Liu, Q., Docherty, J.C., Rendell, J.C., Clanachan, A.S., and Lopaschuk, G.D. (2002) High levels of fatty acids delay the recovery of intracellular pH and cardiac efficiency in post-ischemic hearts by inhibiting glucose oxidation. J. Am. Coll. Cardiol. 39, 718ā€“725.

    CASĀ  PubMedĀ  Google ScholarĀ 

  80. Unger, R.H. (2003) The physiology of cellular liporegulation. Annu. Rev. Physiol. 65, 333ā€“347.

    CASĀ  PubMedĀ  Google ScholarĀ 

  81. Wang, M.Y., Lee, Y., and Unger, R.H. (1999) Novel form of lipolysis induced by leptin. J. Biol. Chem. 274, 17541ā€“17544.

    CASĀ  PubMedĀ  Google ScholarĀ 

  82. Sparagna, G.C., Hickson-Bick, D.L., Buja, L.M., and McMillin, J.B. (2000) A metabolic role for mitochondria in palmitate-induced cardiac myocyte apoptosis. Am. J. Physiol. Heart Circ. Physiol. 279, H2124ā€“2132.

    CASĀ  PubMedĀ  Google ScholarĀ 

  83. Ghosh, S., Qi, D., An, D., et al. (2004) Brief episode of STZ-induced hyperglycemia produces cardiac abnormalities in rats fed a diet rich in n-6 PUFA. Am. J. Physiol. Heart Circ. Physiol. 287, H2518ā€“H2527.

    CASĀ  PubMedĀ  Google ScholarĀ 

  84. Ghosh, S., An, D., Pulinilkunnil, T., et al. (2004) Role of dietary fatty acids and acute hyperglycemia in modulating cardiac cell death. Nutrition 20, 916ā€“923.

    CASĀ  PubMedĀ  Google ScholarĀ 

  85. McIntosh, C.H.S., and Pederson, R.A. (1999) Noninsulin-dependent animal models of diabetes mellitus. In: McNeill, J.H. (ed.) Experimental Models of Diabetes. CRC Press LLC, Boca Raton, FL, pp. 337ā€“398.

    Google ScholarĀ 

  86. Ktorza, A., Bernard, C., Parent, V., et al. (1997) Are animal models of diabetes relevant to the study of the genetics of non-insulin-dependent diabetes in humans? Diabetes Metab. 23(Suppl 2), 38ā€“46.

    PubMedĀ  Google ScholarĀ 

  87. York, D.A. (1996) Lessons from animal models of obesity. Endocrinol. Metab. Clin. North Am. 25, 781ā€“800.

    CASĀ  PubMedĀ  Google ScholarĀ 

  88. Chagnon, Y.C., and Bouchard, C. (1996) Genetics of obesity: advances from rodent studies. Trends Genet. 12, 441ā€“444.

    CASĀ  PubMedĀ  Google ScholarĀ 

  89. Postic, C., Mauvais-Jarvis, F., and Girard, J. (2004) Mouse models of insulin resistance and type 2 diabetes. Ann. Endocrinol. (Paris). 65, 51ā€“59.

    CASĀ  Google ScholarĀ 

  90. Nandi, A., Kitamura, Y., Kahn, C.R., and Accili, D. (2004) Mouse models of insulin resistance. Physiol. Rev. 84, 623ā€“647.

    CASĀ  PubMedĀ  Google ScholarĀ 

  91. Wood, P.A. (2004) Genetically modified mouse models for disorders of fatty acid metabolism: pursuing the nutrigenomics of insulin resistance and type 2 diabetes. Nutrition 20, 121ā€“126.

    CASĀ  PubMedĀ  Google ScholarĀ 

  92. Kahn, C.R. (2003) Knockout mice challenge our concepts of glucose homeostasis and the pathogenesis of diabetes. Exp. Diabetes Res. 4, 169ā€“182.

    Google ScholarĀ 

  93. Zuzker, L.M., and Zucker, T.F. (1961) Fatty, a new mutation in the rats. J. Hered. 52, 275ā€“287.

    Google ScholarĀ 

  94. White, D.W., Wang, D.W., Chua, S.C., Jr., et al. (1997) Constitutive and impaired signaling of leptin receptors containing the Gln ā€“> Pro extracellular domain fatty mutation. Proc. Natl. Acad. Sci. U. S. A. 94, 10657ā€“10662.

    CASĀ  PubMedĀ  Google ScholarĀ 

  95. Bray, G.A., and York, D.A. (1972) Studies on food intake of genetically obese rats. Am. J. Physiol. 223, 176ā€“179.

    CASĀ  PubMedĀ  Google ScholarĀ 

  96. Chan, C.B., Pederson, R.A., Buchan, A.M., Tubesing, K.B., and Brown, J.C. (1985) Gastric inhibitory polypeptide and hyperinsulinemia in the Zucker (fa/fa) rat: a developmental study. Int. J. Obes. 9, 137ā€“146.

    CASĀ  PubMedĀ  Google ScholarĀ 

  97. Peterson, R.G., Shaw, W.N., Neel, M.A., Little, L.A., and Eichberg, J. (1990) Zucker diabetic fatty rats as a model for non-insulin dependent diabetes mellitus. ILAR News 32.

    Google ScholarĀ 

  98. Peterson, R.G. (2000) The Zucker diabetic fatty rat. In: Sima, A.F., and Shafrir, S. (eds.) Animal Models of Diabetes: A Primer. Harwood Academic Publisher, Newark, NJ, pp. 109ā€“128.

    Google ScholarĀ 

  99. Tokuyama, Y., Sturis, J., DePaoli, A.M., et al. (1995) Evolution of beta-cell dysfunction in the male Zucker diabetic fatty rat. Diabetes 44, 1447ā€“1457.

    CASĀ  PubMedĀ  Google ScholarĀ 

  100. Uphues, I., Kolter, T., Goud, B., and Eckel, J. (1995) Failure of insulin-regulated recruitment of the glucose transporter GLUT4 in cardiac muscle of obese Zucker rats is associated with alterations of small-molecular-mass GTP-binding proteins. Biochem. J. 311, 161ā€“166.

    CASĀ  PubMedĀ  Google ScholarĀ 

  101. Slieker, L.J., Sundell, K.L., Heath, W.F., et al. (1992) Glucose transporter levels in tissues of spontaneously diabetic Zucker fa/fa rat (ZDF/drt) and viable yellow mouse (Avy/a). Diabetes 41, 187ā€“193.

    CASĀ  PubMedĀ  Google ScholarĀ 

  102. Luiken, J.J., Arumugam, Y., Dyck, D.J., et al. (2001) Increased rates of fatty acid uptake and plasmalemmal fatty acid transporters in obese Zucker rats. J. Biol. Chem. 276, 40567ā€“40573.

    CASĀ  PubMedĀ  Google ScholarĀ 

  103. Unger, R.H., and Orci, L. (2000) Lipotoxic diseases of nonadipose tissues in obesity. Int. J. Obes. Relat. Metab. Disord. 24, S28ā€“32.

    CASĀ  PubMedĀ  Google ScholarĀ 

  104. Young, M.E., Guthrie, P.H., Razeghi, P., et al. (2002) Impaired long-chain fatty acid oxidation and contractile dysfunction in the obese Zucker rat heart. Diabetes 51, 2587ā€“2595.

    CASĀ  PubMedĀ  Google ScholarĀ 

  105. Zhou, Y.T., Grayburn, P., Karim, A., et al. (2000) Lipotoxic heart disease in obese rats: implications for human obesity. Proc. Natl. Acad. Sci. U. S. A. 97, 1784ā€“1789.

    CASĀ  PubMedĀ  Google ScholarĀ 

  106. Atkinson, L.L., Kozak, R., Kelly, S.E., Onay Besikci, A., Russell, J.C., and Lopaschuk, G.D. (2003) Potential mechanisms and consequences of cardiac triacylglycerol accumulation in insulin-resistant rats. Am. J. Physiol. Endocrinol. Metab. 284, E923ā€“E930.

    CASĀ  PubMedĀ  Google ScholarĀ 

  107. Wang, M.Y., and Unger, R.H. (2005) Role of PP2C in cardiac lipid accumulation in obese rodents and its prevention by troglitazone. Am. J. Physiol. Endocrinol. Metab. 288, E216ā€“E221.

    CASĀ  PubMedĀ  Google ScholarĀ 

  108. Listenberger, L.L., Han, X., Lewis, S.E., et al. (2003) Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc. Natl. Acad. Sci. U. S. A. 100, 3077ā€“3082.

    CASĀ  PubMedĀ  Google ScholarĀ 

  109. Zhou, Y.T., Shimabukuro, M., Lee, Y., et al. (1998) Enhanced de novo lipogenesis in the leptin-unresponsive pancreatic islets of prediabetic Zucker diabetic fatty rats: role in the pathogenesis of lipotoxic diabetes. Diabetes 47, 1904ā€“1908.

    CASĀ  PubMedĀ  Google ScholarĀ 

  110. Shimabukuro, M., Zhou, Y.T., Levi, M., and Unger, R.H. (1998) Fatty acid-induced beta cell apoptosis: a link between obesity and diabetes. Proc. Natl. Acad. Sci. U. S. A. 95, 2498ā€“2502.

    CASĀ  PubMedĀ  Google ScholarĀ 

  111. Wu-Peng, X.S., Chua, S.C., Jr., Okada, N., Liu, S.M., Nicolson, M., and Leibel, R.L. (1997) Phenotype of the obese Koletsky(f) rat due to Tyr763Stop mutation in the extracellular domain of the leptin receptor (Lepr): evidence for deficient plasma-to-CSF transport of leptin in both the Zucker and Koletsky obese rat. Diabetes 46, 513ā€“518.

    CASĀ  PubMedĀ  Google ScholarĀ 

  112. Brindley, D.N., and Russell, J.C. (2002) Animal models of insulin resistance and cardiovascular disease: some therapeutic approaches using JCR:LA-cp rat. Diabetes Obes. Metab. 4, 1ā€“10.

    CASĀ  PubMedĀ  Google ScholarĀ 

  113. Russell, J.C., Shillabeer, G., Bar-Tana, J., et al. (1998) Development of insulin resistance in the JCR:LA-cp rat: role of triacylglycerols and effects of MEDICA 16. Diabetes 47, 770ā€“778.

    CASĀ  PubMedĀ  Google ScholarĀ 

  114. Pederson, R.A., Campos, R.V., Buchan, A.M., Chisholm, C.B., Russell, J.C., and Brown, J.C. (1991) Comparison of the enteroinsular axis in two strains of obese rat, the fatty Zucker and the JCR:LA-corpulent. Int. J. Obes. 15, 461ā€“470.

    CASĀ  PubMedĀ  Google ScholarĀ 

  115. Russell, J.C., Graham, S., and Hameed, M. (1994) Abnormal insulin and glucose metabolism in the JCR:LA-corpulent rat. Metabolism 43, 538ā€“543.

    CASĀ  PubMedĀ  Google ScholarĀ 

  116. Russell, J.C., Koeslag, D.G., Dolphin, P.J., and Amy, R.M. (1990) Prevention of myocardial lesions in JCR:LA-corpulent rats by nifedipine. Arteriosclerosis 10, 658ā€“664.

    CASĀ  PubMedĀ  Google ScholarĀ 

  117. Richardson, M., Schmidt, A.M., Graham, S.E., Achen, B., DeReske, M., and Russell, J.C. (1998) Vasculopathy and insulin resistance in the JCR:LA-cp rat. Atherosclerosis 138, 135ā€“146.

    CASĀ  PubMedĀ  Google ScholarĀ 

  118. Kawano, K., Hirashima, T., Mori, S., and Natori, T. (1996) Spontaneously diabetic rat ā€œOLETFā€ as a model for NIDDM in humans. In: Shafrir, E. (ed.) Lessons from Animal Diabetes. Birkhauser, Boston, MA, p. 225.

    Google ScholarĀ 

  119. Kawano, K., Hirashima, T., Mori, S., Saitoh, Y., Kurosumi, M., and Natori, T. (1992) Spontaneous long-term hyperglycemic rat with diabetic complications. Otsuka Long-Evans Tokushima Fatty (OLETF) strain. Diabetes 41, 1422ā€“1428.

    CASĀ  PubMedĀ  Google ScholarĀ 

  120. Abe, T., Ohga, Y., Tabayashi, N., et al. (2002) Left ventricular diastolic dysfunction in type 2 diabetes mellitus model rats. Am. J. Physiol. Heart Circ. Physiol. 282, H138ā€“H148.

    CASĀ  PubMedĀ  Google ScholarĀ 

  121. Mizushige, K., Yao, L., Noma, T., et al. (2000) Alteration in left ventricular diastolic filling and accumulation of myocardial collagen at insulin-resistant prediabetic stage of a type II diabetic rat model. Circulation 101, 899ā€“907.

    CASĀ  PubMedĀ  Google ScholarĀ 

  122. Yagi, K., Kim, S., Wanibuchi, H., Yamashita, T., Yamamura, Y., and Iwao, H. (1997) Characteristics of diabetes, blood pressure, and cardiac and renal complications in Otsuka Long-Evans Tokushima fatty rats. Hypertension 29, 728ā€“735.

    CASĀ  PubMedĀ  Google ScholarĀ 

  123. Saito, F., Kawaguchi, M., Izumida, J., Asakura, T., Maehara, K., and Maruyama, Y. (2003) Alteration in haemodynamics and pathological changes in the cardiovascular system during the development of Type 2 diabetes mellitus in OLETF rats. Diabetologia 46, 1161ā€“1169.

    CASĀ  PubMedĀ  Google ScholarĀ 

  124. Goto, Y., Suzuki, K., Sasaki, M., Ono, T., and Abe, S. (1988) GK rat as a model of nonobese, non-insulin dependent diabetes. Selective breeding over 35 generations. In: Shafrir, E., and Reynold, A.E. (eds.) Frontiers in Diabetes Research. Lessons from Animal Diabetes II. John Libbey and Co, London, pp. 301ā€“303.

    Google ScholarĀ 

  125. El-Omar, M.M., Yang, Z.K., Phillips, A.O., and Shah, A.M. (2004) Cardiac dysfunction in the Goto-Kakizaki rat. A model of type II diabetes mellitus. Basic Res. Cardiol. 99, 133ā€“141.

    PubMedĀ  Google ScholarĀ 

  126. Guenifi, A., Abdel-Halim, S.M., Hoog, A., Falkmer, S., and Ostenson, C.G. (1995) Preserved beta-cell density in the endocrine pancreas of young, spontaneously diabetic Goto-Kakizaki (GK) rats. Pancreas 10, 148ā€“153.

    CASĀ  PubMedĀ  Google ScholarĀ 

  127. Desrois, M., Sidell, R.J., Gauguier, D., Davey, C.L., Radda, G.K., and Clarke. K. (2004) Gender differences in hypertrophy, insulin resistance and ischemic injury in the aging type 2 diabetic rat heart. J. Mol. Cell Cardiol. 37, 547ā€“555.

    CASĀ  PubMedĀ  Google ScholarĀ 

  128. Santos, D.L., Palmeira, C.M., Seica, R., et al. (2003) Diabetes and mitochondrial oxidative stress: a study using heart mitochondria from the diabetic Goto-Kakizaki rat. Mol. Cell Biochem. 246, 163ā€“170.

    CASĀ  PubMedĀ  Google ScholarĀ 

  129. Hwang, I.S., Ho, H., Hoffman, B.B., and Reaven, G.M. (1987) Fructose-induced insulin resistance and hypertension in rats. Hypertension 10, 512ā€“516.

    CASĀ  PubMedĀ  Google ScholarĀ 

  130. Dai, S., and McNeill, J.H. (1995) Fructose-induced hypertension in rats is concentration- and duration-dependent. J. Pharmacol. Toxicol. Methods 33, 101ā€“107.

    CASĀ  PubMedĀ  Google ScholarĀ 

  131. Verma, S., Bhanot, S., and McNeill, J.H. (1994) Antihypertensive effects of metformin in fructose-fed hyperinsulinemic, hypertensive rats. J. Pharmacol. Exp. Ther. 271, 1334ā€“1337.

    CASĀ  PubMedĀ  Google ScholarĀ 

  132. Galipeau, D., Arikawa, E., Sekirov, I., and McNeill, J.H. (2001) Chronic thromboxane synthase inhibition prevents fructose-induced hypertension. Hypertension 38, 872ā€“876.

    CASĀ  PubMedĀ  Google ScholarĀ 

  133. Vasdev, S., Longerich, L., and Gill, V. (2004) Prevention of fructose-induced hypertension by dietary vitamins. Clin. Biochem. 37, 1ā€“9.

    CASĀ  PubMedĀ  Google ScholarĀ 

  134. Elliott, S.S., Keim, N.L., Stern, J.S., Teff, K., and Havel, P.J. (2002) Fructose, weight gain, and the insulin resistance syndrome. Am. J. Clin. Nutr. 76, 911ā€“922.

    CASĀ  PubMedĀ  Google ScholarĀ 

  135. Havel, P.J. (2005) Dietary fructose: implications for dysregulation of energy homeostasis and lipid/carbohydrate metabolism. Nutr. Rev. 63, 133ā€“157.

    PubMedĀ  Google ScholarĀ 

  136. Verma, S., Yao, L., Dumont, A.S., and McNeill, J.H. (2000) Metformin treatment corrects vascular insulin resistance in hypertension. J. Hypertens. 18, 1445ā€“1450.

    CASĀ  PubMedĀ  Google ScholarĀ 

  137. Bhanot, S., Michoulas, A., and McNeill, J.H. (1995) Antihypertensive effects of vanadium compounds in hyperinsulinemic, hypertensive rats. Mol. Cell Biochem. 153, 205ā€“209.

    CASĀ  PubMedĀ  Google ScholarĀ 

  138. Lee, M.K., Miles, P.D., Khoursheed, M., Gao, K.M., Moossa, A.R., and Olefsky, J.M. (1994) Metabolic effects of troglitazone on fructose-induced insulin resistance in the rat. Diabetes 43, 1435ā€“1439.

    CASĀ  PubMedĀ  Google ScholarĀ 

  139. Katakam, P.V., Ujhelyi, M.R., Hoenig, M.E., and Miller, A.W. (1998) Endothelial dysfunction precedes hypertension in diet-induced insulin resistance. Am. J. Physiol. 275, R788ā€“R792.

    CASĀ  PubMedĀ  Google ScholarĀ 

  140. Verma, S., Bhanot, S., Yao, L., and McNeill, J.H. (1996) Defective endothelium-dependent relaxation in fructose-hypertensive rats. Am. J. Hypertens. 9, 370ā€“376.

    CASĀ  PubMedĀ  Google ScholarĀ 

  141. Verma, S., Skarsgard, P., Bhanot, S., Yao, L., Laher, I., and McNeill, J.H. (1997) Reactivity of mesenteric arteries from fructose hypertensive rats to endothelin-1. Am. J. Hypertens. 10, 1010ā€“1019.

    CASĀ  PubMedĀ  Google ScholarĀ 

  142. Galipeau, D., Verma, S., and McNeill, J.H. (2002) Female rats are protected against fructose-induced changes in metabolism and blood pressure. Am. J. Physiol. Heart Circ. Physiol. 283, H2478ā€“H2484.

    CASĀ  PubMedĀ  Google ScholarĀ 

  143. Song, D., Arikawa, E., Galipeau, D., Battell, M., and McNeill, J.H. (2004) Androgens are necessary for the development of fructose-induced hypertension. Hypertension 43, 667ā€“672.

    CASĀ  PubMedĀ  Google ScholarĀ 

  144. Vasudevan, H., Xiang, H., and McNeill, J.H. (2005) Differential regulation of insulin resistance and hypertension by sex hormones in fructose-fed male rats. Am. J. Physiol. Heart Circ. Physiol. 289(4): H1335ā€“42.

    CASĀ  PubMedĀ  Google ScholarĀ 

  145. Fried, S.K., and Rao, S.P. (2003) Sugars, hypertriglyceridemia, and cardiovascular disease. Am. J. Clin. Nutr. 78, 873Sā€“880S.

    CASĀ  PubMedĀ  Google ScholarĀ 

  146. Marckmann, P., Raben, A., and Astrup, A. (2000) Ad libitum intake of low-fat diets rich in either starchy foods or sucrose: effects on blood lipids, factor VII coagulant activity, and fibrinogen. Metabolism 49, 731ā€“735.

    CASĀ  PubMedĀ  Google ScholarĀ 

  147. Raben, A., Holst, J.J., Madsen, J., and Astrup, A. (2001) Diurnal metabolic profiles after 14 d of an ad libitum high-starch, high-sucrose, or high-fat diet in normal-weight never-obese and postobese women. Am. J. Clin. Nutr. 73, 177ā€“189.

    CASĀ  PubMedĀ  Google ScholarĀ 

  148. Albrink, M.J., and Ullrich, I.H. (1986) Interaction of dietary sucrose and fiber on serum lipids in healthy young men fed high carbohydrate diets. Am. J. Clin. Nutr. 43, 419ā€“428.

    CASĀ  PubMedĀ  Google ScholarĀ 

  149. Frayn, K.N., and Kingman, S.M. (1995) Dietary sugars and lipid metabolism in humans. Am. J. Clin. Nutr. 62, 250Sā€“261S; discussion 261Sā€“263S.

    CASĀ  PubMedĀ  Google ScholarĀ 

  150. Dutta, K., Podolin, D.A., Davidson, M.B., and Davidoff, A.J. (2001) Cardiomyocyte dysfunction in sucrose-fed rats is associated with insulin resistance. Diabetes 50, 1186ā€“1192.

    CASĀ  PubMedĀ  Google ScholarĀ 

  151. Davidoff, A.J., Mason, M.M., Davidson, M.B., et al. (2004) Sucrose-induced cardiomyocyte dysfunction is both preventable and reversible with clinically relevant treatments. Am. J. Physiol. Endocrinol. Metab. 286, E718ā€“E724.

    CASĀ  PubMedĀ  Google ScholarĀ 

  152. Coderre, L., Vallega, G.A., Pilch, P.F., and Chipkin, S.R. (1996) In vivo effects of dexamethasone and sucrose on glucose transport (GLUT-4) protein tissue distribution. Am. J. Physiol. 271, E643ā€“E648.

    CASĀ  PubMedĀ  Google ScholarĀ 

  153. Kawasaki, T., Kashiwabara, A., Sakai, T., et al. (2005) Long-term sucrose-drinking causes increased body weight and glucose intolerance in normal male rats. Br. J. Nutr. 93, 613ā€“618.

    CASĀ  PubMedĀ  Google ScholarĀ 

  154. Hintz, K.K., Aberle, N.S., and Ren, J. (2003) Insulin resistance induces hyperleptinemia, cardiac contractile dysfunction but not cardiac leptin resistance in ventricular myocytes. Int. J. Obes. Relat. Metab. Disord. 27, 1196ā€“1203.

    CASĀ  PubMedĀ  Google ScholarĀ 

  155. Wold, L.E., Dutta, K., Mason, M.M., et al. (2005) Impaired SERCA function contributes to cardiomyocyte dysfunction in insulin resistant rats. J. Mol. Cell Cardiol. 39(2): 297ā€“307.

    CASĀ  PubMedĀ  Google ScholarĀ 

  156. Pierce, G.N., Lockwood, M.K., and Eckhert, C.D. (1989) Cardiac contracile protein ATPase activity in a diet induced model of noninsulin dependent diabetes mellitus. Can. J. Cardiol. 5, 117ā€“120.

    CASĀ  PubMedĀ  Google ScholarĀ 

  157. Busserolles, J., Zimowska, W., Rock, E., Rayssiguier, Y., and Mazur, A. (2002) Rats fed a high sucrose diet have altered heart antioxidant enzyme activity and gene expression. Life Sci. 71, 1303ā€“1312.

    CASĀ  PubMedĀ  Google ScholarĀ 

  158. Schacke, H., Docke, W.D., and Asadullah, K. (2002) Mechanisms involved in the side effects of glucocorticoids. Pharmacol. Ther. 96, 23ā€“43.

    CASĀ  PubMedĀ  Google ScholarĀ 

  159. Phillips, D.I., Barker, D.J., Fall, C.H., et al. (1998) Elevated plasma cortisol concentrations: a link between low birth weight and the insulin resistance syndrome? J. Clin. Endocrinol. Metab. 83, 757ā€“760.

    CASĀ  PubMedĀ  Google ScholarĀ 

  160. Rosmond, R., Dallman, M.F., and Bjorntorp, P. (1998) Stress-related cortisol secretion in men: relationships with abdominal obesity and endocrine, metabolic and hemodynamic abnormalities. J. Clin. Endocrinol. Metab. 83, 1853ā€“1859.

    CASĀ  PubMedĀ  Google ScholarĀ 

  161. Stojanovska, L., Rosella, G., and Proietto, J. (1990) Evolution of dexamethasone-induced insulin resistance in rats. Am. J. Physiol. 258, E748ā€“E756.

    CASĀ  PubMedĀ  Google ScholarĀ 

  162. Asensio, C., Muzzin, P., and Rohner-Jeanrenaud, F. (2004) Role of glucocorticoids in the physiopathology of excessive fat deposition and insulin resistance. Int. J. Obes. Relat. Metab. Disord. 28, S45ā€“S52.

    CASĀ  PubMedĀ  Google ScholarĀ 

  163. Zakrzewska, K.E., Cusin, I., Stricker-Krongrad, A., et al. (1999) Induction of obesity and hyperleptinemia by central glucocorticoid infusion in the rat. Diabetes 48, 365ā€“370.

    CASĀ  PubMedĀ  Google ScholarĀ 

  164. Cusin, I., Rouru, J., and Rohner-Jeanrenaud, F. (2001) Intracerebroventricular glucocorticoid infusion in normal rats: induction of parasympathetic-mediated obesity and insulin resistance. Obes. Res. 9, 401ā€“406.

    CASĀ  PubMedĀ  Google ScholarĀ 

  165. Reynolds, R.M., Chapman, K.E., Seckl, J.R., Walker, B.R., McKeigue, P.M., and Lithell, H.O. (2002) Skeletal muscle glucocorticoid receptor density and insulin resistance. JAMA 287, 2505ā€“2506.

    CASĀ  PubMedĀ  Google ScholarĀ 

  166. Whorwood, C.B., Donovan, S.J., Flanagan, D., Phillips, D.I., and Byrne, C.D. (2002) Increased glucocorticoid receptor expression in human skeletal muscle cells may contribute to the pathogenesis of the metabolic syndrome. Diabetes 51, 1066ā€“1075.

    CASĀ  PubMedĀ  Google ScholarĀ 

  167. Seckl, J.R., Morton, N.M., Chapman, K.E., and Walker, B.R. (2004) Glucocorticoids and 11beta-hydroxysteroid dehydrogenase in adipose tissue. Recent Prog. Horm. Res. 59, 359ā€“393.

    CASĀ  PubMedĀ  Google ScholarĀ 

  168. Masuzaki, H., Paterson, J., Shinyama, H., et al. (2001) A transgenic model of visceral obesity and the metabolic syndrome. Science 294, 2166ā€“2170.

    CASĀ  PubMedĀ  Google ScholarĀ 

  169. Kotelevtsev, Y., Holmes, M.C., Burchell, A., et al. (1997) 11beta-hydroxysteroid dehydrogenase type 1 knockout mice show attenuated glucocorticoid-inducible responses and resist hyperglycemia on obesity or stress. Proc. Natl. Acad. Sci. U. S. A. 94, 14924ā€“14929.

    CASĀ  PubMedĀ  Google ScholarĀ 

  170. Bowker-Kinley, M.M., Davis, W.I., Wu, P., Harris, R.A., and Popov, K.M. (1998) Evidence for existence of tissue-specific regulation of the mammalian pyruvate dehydrogenase complex. Biochem. J. 329, 191ā€“196.

    CASĀ  PubMedĀ  Google ScholarĀ 

  171. Levak-Frank, S., Hofmann, W., Weinstock, P.H., et al. (1999) Induced mutant mouse lines that express lipoprotein lipase in cardiac muscle, but not in skeletal muscle and adipose tissue, have normal plasma triglyceride and high-density lipoprotein-cholesterol levels. Proc. Natl. Acad. Sci. U. S. A. 96, 3165ā€“3170.

    CASĀ  PubMedĀ  Google ScholarĀ 

  172. Riccardi, G., Giacco, R., and Rivellese, A.A. (2004) Dietary fat, insulin sensitivity and the metabolic syndrome. Clin. Nutr. 23, 447ā€“456.

    CASĀ  PubMedĀ  Google ScholarĀ 

  173. Storlien, L.H., Baur, L.A., Kriketos, A.D., et al. (1996) Dietary fats and insulin action. Diabetologia 39, 621ā€“631.

    CASĀ  PubMedĀ  Google ScholarĀ 

  174. Lichtenstein, A.H., and Schwab, U.S. (2000) Relationship of dietary fat to glucose metabolism. Atherosclerosis 150, 227ā€“243.

    CASĀ  PubMedĀ  Google ScholarĀ 

  175. Rivellese, A.A., and Lilli, S. (2003) Quality of dietary fatty acids, insulin sensitivity and type 2 diabetes. Biomed. Pharmacother. 57, 84ā€“87.

    CASĀ  PubMedĀ  Google ScholarĀ 

  176. Ouwens, D.M., Boer, C., Fodor, M., et al. (2005) Cardiac dysfunction induced by high-fat diet is associated with altered myocardial insulin signalling in rats. Diabetologia 48, 1229ā€“1237.

    CASĀ  PubMedĀ  Google ScholarĀ 

  177. Khan, I.Y., Dekou, V., Douglas, G., et al. (2005) A high-fat diet during rat pregnancy or suckling induces cardiovascular dysfunction in adult offspring. Am. J. Physiol. Regul. Integr. Comp. Physiol. 288, R127ā€“R133.

    CASĀ  PubMedĀ  Google ScholarĀ 

  178. Kaneko, T., Wang, P.Y., Wang, Y., and Sato, A.. (2000) The long-term effect of low-carbohydrate/high-fat diet on the development of diabetes mellitus in spontaneously diabetic rats. Diabetes Metab. 26, 459ā€“464.

    CASĀ  PubMedĀ  Google ScholarĀ 

  179. Chalkley, S.M., Hettiarachchi, M., Chisholm, D.J., and Kraegen, E.W. (2002) Long-term high-fat feeding leads to severe insulin resistance but not diabetes in Wistar rats. Am. J. Physiol. Endocrinol. Metab. 282, E1231ā€“E1238.

    CASĀ  PubMedĀ  Google ScholarĀ 

  180. Drake, A.J., Livingstone, D.E., Andrew, R., Seckl, J.R., Morton, N.M., and Walker, B.R. (2005) Reduced adipose glucocorticoid reactivation and increased hepatic glucocorticoid clearance as an early adaptation to high-fat feeding in Wistar rats. Endocrinology 146, 913ā€“919.

    CASĀ  PubMedĀ  Google ScholarĀ 

  181. Shimabukuro, M., Higa, M., Zhou, Y.T., Wang, M.Y., Newgard, C.B., and Unger, R.H. (1998) Lipoapoptosis in beta-cells of obese prediabetic fa/fa rats. Role of serine palmitoyltransferase overexpression. J. Biol. Chem. 273, 32487ā€“32490.

    CASĀ  PubMedĀ  Google ScholarĀ 

  182. Reed, M.J., Meszaros, K., Entes, L.J., et al. (2000) A new rat model of type 2 diabetes: the fat-fed, streptozotocin-treated rat. Metabolism 49, 1390ā€“1394.

    CASĀ  PubMedĀ  Google ScholarĀ 

  183. Ghosh, S., Ting, S., Lau, H., et al. (2004) Increased efflux of glutathione conjugate in acutely diabetic cardiomyocytes. Can. J. Physiol. Pharmacol. 82, 879ā€“887.

    CASĀ  PubMedĀ  Google ScholarĀ 

  184. Das, D.K. (2001) Redox regulation of cardiomyocyte survival and death. Antioxid. Redox. Signal. 3, 23ā€“37.

    CASĀ  PubMedĀ  Google ScholarĀ 

  185. Ghosh, S., Pulinilkunnil, T., Yuen, G., et al. (2005) Cardiomyocyte apoptosis induced by short-term diabetes requires mitochondrial GSH depletion. Am. J. Physiol. Heart Circ. Physiol. 289(2): H768ā€“76.

    CASĀ  PubMedĀ  Google ScholarĀ 

  186. Hampton, M.B., Fadeel, B., and Orrenius, S. (1998) Redox regulation of the caspases during apoptosis. Ann. N. Y. Acad. Sci. 854, 328ā€“335.

    CASĀ  PubMedĀ  Google ScholarĀ 

  187. Berry, E.M. (2001) Whoā€™s afraid of n-6 polyunsaturated fatty acids? Methodological considerations for assessing whether they are harmful. Nutr. Metab. Cardiovasc. Dis. 11, 181ā€“188.

    CASĀ  PubMedĀ  Google ScholarĀ 

  188. Simopoulos, A.P. (1999) Evolutionary aspects of omega-3 fatty acids in the food supply. Prostaglandins Leukot. Essent. Fatty Acids. 60, 421ā€“429.

    CASĀ  PubMedĀ  Google ScholarĀ 

  189. Simopoulos, A.P. (1999) Essential fatty acids in health and chronic disease. Am. J. Clin. Nutr. 70, 560Sā€“569S.

    CASĀ  PubMedĀ  Google ScholarĀ 

  190. Simopoulos, A.P., Leaf, A., and Salem, N., Jr. (1999) Essentiality of and recommended dietary intakes for omega-6 and omega-3 fatty acids. Ann. Nutr. Metab. 43, 127ā€“130.

    CASĀ  PubMedĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Ghosh, S., Rodrigues, B., Ren, J. (2007). Rat Models of Cardiac Insulin Resistance. In: Sreejayan, N., Ren, J. (eds) Vascular Biology Protocols. Methods in Molecular Medicineā„¢, vol 139. Humana Press. https://doi.org/10.1007/978-1-59745-571-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-571-8_7

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-574-3

  • Online ISBN: 978-1-59745-571-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics