Skip to main content

Detection of Reactive Oxygen Species and Nitric Oxide in Vascular Cells and Tissues

Comparison of Sensitivity and Specificity

  • Protocol
Vascular Biology Protocols

Part of the book series: Methods in Molecular Medicineā„¢ ((MIMM,volume 139))

Summary

Reactive oxygen and nitrogen species are thought to contribute to pathogenesis of many cardiovascular diseases including hypertension, atherosclerosis, restenosis, heart failure, and diabetic vascular complications. Some of these reactive oxygen species also play an important role in vascular signaling. In this chapter, we describe various techniques that we have successfully employed to reliably measure superoxide and hydrogen peroxide. Because reactive oxygen species are capable of rapidly inactivating nitric oxide and because endothelial function characterized by nitric oxide bioavailability is an important indicator of vascular health, we have also included novel techniques capable of directly measuring nitric oxide radical from vascular cells and tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cai, H., and Harrison, D. G. (2000) Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress, Circ. Res. 87, 840ā€“844.

    CASĀ  PubMedĀ  Google ScholarĀ 

  2. Cai, H., Griendling, K. K., and Harrison, D. G. (2003) The vascular NAD(P)H oxidases as therapeutic targets in cardiovascular diseases, Trends Pharmacol. Sci. 24, 471ā€“478.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  3. Griendling, K. K., and FitzGerald, G. A. (2003) Oxidative stress and cardiovascular injury: part I: basic mechanisms and in vivo monitoring of ROS, Circulation 108, 1912ā€“1916.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  4. Griendling, K. K. (2004) Novel NAD(P)H oxidases in the cardiovascular system, Heart 90, 491ā€“493.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  5. Jung, O., Marklund, S. L., Geiger, H., Pedrazzini, T., Busse, R., and Brandes, R. P. (2003) Extracellular superoxide dismutase is a major determinant of nitric oxide bioavailability: in vivo and ex vivo evidence from ecSOD-deficient mice, Circ. Res. 93, 622ā€“629.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  6. Khatri, J. J., Johnson, C., Magid, R., Lessner, S. M., Laude, K. M., Dikalov, S. I., Harrison, D. G., Sung, H. J., Rong, Y., and Galis, Z. S. (2004) Vascular oxidant stress enhances progression and angiogenesis of experimental atheroma, Circulation 109, 520ā€“525.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  7. Yang, H., Roberts, L. J., Shi, M. J., Zhou, L. C., Ballard, B. R., Richardson, A., and Guo, Z. M. (2004) Retardation of atherosclerosis by overexpression of catalase or both Cu/Zn-superoxide dismutase and catalase in mice lacking apolipoprotein E, Circ. Res. 95, 1075ā€“1081.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  8. Tarpey, M. M., Wink, D. A., and Grisham, M. B. (2004) Methods for detection of reactive metabolites of oxygen and nitrogen: in vitro and in vivo considerations, Am. J. Physiol. Regul. Integr. Comp. Physiol. 286, R431ā€“R444.

    CASĀ  PubMedĀ  Google ScholarĀ 

  9. Munzel, T., Afanasā€™ev, I. B., Kleschyov, A. L., and Harrison, D. G. (2002) Detection of superoxide in vascular tissue, Arterioscler. Thromb. Vasc. Biol. 22, 1761ā€“1768.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  10. Zhao, H., Kalivendi, S., Zhang, H., Joseph, J., Nithipatikom, K., Vasquez-Vivar, J., and Kalyanaraman, B. (2003) Superoxide reacts with hydroethidine but forms a fluorescent product that is distinctly different from ethidium: potential implications in intracellular fluorescence detection of superoxide, Free Radic. Biol. Med. 34, 1359ā€“1368.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  11. Fink, B., Laude, K., McCann, L., Doughan, A., Harrison, D. G., and Dikalov, S. (2004) Detection of intracellular superoxide formation in endothelial cells and intact tissues using dihydroethidium and an HPLC-based, Am. J. Physiol. Cell Physiol. 287, C895ā€“902.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  12. Buettner, G. R., and Mason, R. P. (1990) Spin-trapping methods for detecting superoxide and hydroxyl free radicals in vitro and in vivo, Methods Enzymol. 186, 127ā€“133.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  13. Villamena, F. A., and Zweier, J. L. (2004) Detection of reactive oxygen and nitrogen species by EPR spin trapping, Antioxid. Redox Signal. 6, 619ā€“629.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  14. Dikalov, S. I., Dikalova, A. E., and Mason, R. P. (2002) Noninvasive diagnostic tool for inflammation-induced oxidative stress using electron spin resonance spectroscopy and an extracellular cyclic hydroxylamine, Arch. Biochem. Biophys. 402, 218ā€“226.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  15. Dikalov, S., Grigorā€™ev, I. A., Voinov, M., and Bassenge, E. (1998) Detection of superoxide radicals and peroxynitrite by 1-hydroxy-4-phosphonooxy-2,2,6,6-tetramethylpiperidine: quantification of extracellular superoxide radicals formation, Biochem. Biophys. Res. Commun. 248, 211ā€“215.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  16. Landmesser, U., Cai, H., Dikalov, S., McCann, L., Hwang, J., Jo, H., Holland, S. M., and Harrison, D. G. (2002) Role of p47(phox) in vascular oxidative stress and hypertension caused by angiotensin II, Hypertension 40, 511ā€“515.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  17. McNally, J. S., Davis, M. E., Giddens, D. P., Saha, A., Hwang, J., Dikalov, S., Jo, H., and Harrison, D. G. (2003) Role of xanthine oxidoreductase and NAD(P)H oxidase in endothelial superoxide production in response to oscillatory shear stress, Am. J. Physiol. Heart Circ. Physiol. 285, H2290ā€“H2297.

    CASĀ  PubMedĀ  Google ScholarĀ 

  18. Spiekermann, S., Landmesser, U., Dikalov, S., Bredt, M., Gamez, G., Tatge, H., Reepschlager, N., Hornig, B., Drexler, H., and Harrison, D. G. (2003) Electron spin resonance characterization of vascular xanthine and NAD(P)H oxidase activity in patients with coronary artery disease: relation to endothelium-dependent vasodilation, Circulation 107, 1383ā€“1389.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  19. Cai, H. (2005) Hydrogen peroxide regulation of endothelial function: mechanisms, consequences and origins, Cardiovasc. Res. 68, 26ā€“36.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  20. Cai, H. (2005) NAD(P)H oxidase-dependent self-propagation of hydrogen peroxide and vascular disease, Circ. Res. 96, 818ā€“822.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  21. Liu, X., and Zweier, J. L. (2001) A real-time electrochemical technique for measurement of cellular hydrogen peroxide generation and consumption: evaluation in human polymorphonuclear leukocytes, Free Radic. Biol. Med. 31, 894ā€“901.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  22. Friedemann, M. N., Robinson, S. W., and Gerhardt, G. A. (1996) o-Phenylenediamine-modified carbon fiber electrodes for the detection of nitric oxide, Anal. Chem. 68, 2621ā€“2628.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  23. Cai, H., Li, Z., Goette, A., Mera, F., Honeycutt, C., Feterik, K., Wilcox, J. N., Dudley, S. C., Jr., Harrison, D. G., and Langberg, J. J. (2002) Downregulation of endocardial nitric oxide synthase expression and nitric oxide production in atrial fibrillation: potential mechanisms for atrial thrombosis and stroke, Circulation 106, 2854ā€“2858.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  24. Vanin, A. F., Huisman, A., and van Faassen, E. E. (2002) Iron dithiocarbamate as spin trap for nitric oxide detection: pitfalls and successes, Methods Enzymol. 359, 27ā€“42.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  25. Komarov, A. M., Wink, D. A., Feelisch, M., and Schmidt, H. H. (2000) Electron-paramagnetic resonance spectroscopy using N-methyl-D-glucamine dithiocarbamate iron cannot discriminate between nitric oxide and nitroxyl: implications for the detection of reaction products for nitric oxide synthase, Free Radic. Biol. Med. 28, 739ā€“742.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  26. Xia, Y., Cardounel, A. J., Vanin, A. F., and Zweier, J. L. (2000) Electron paramagnetic resonance spectroscopy with N-methyl-D-glucamine dithiocarbamate iron complexes distinguishes nitric oxide and nitroxyl anion in a redox-dependent manner: applications in identifying nitrogen monoxide products from nitric oxide synthase, Free Radic. Biol. Med. 29, 793ā€“797.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  27. Cai, H., McNally, J. S., Weber, M., and Harrison, D. G. (2004) Oscillatory shear stress upregulation of endothelial nitric oxide synthase requires intracellular hydrogen peroxide and CaMKII, J. Mol. Cell Cardiol. 37, 121ā€“125.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  28. Kleschyov, A. L., and Munzel, T. (2002) Advanced spin trapping of vascular nitric oxide using colloid iron diethyldithiocarbamate, Methods Enzymol. 359, 42ā€“51.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  29. Cai, H., Li, Z., Dikalov, S., Holland, S. M., Hwang, J., Jo, H., Dudley, S. C., Jr., and Harrison, D. G. (2002) NAD(P)H oxidase-derived hydrogen peroxide mediates endothelial nitric oxide production in response to angiotensin II, J. Biol. Chem. 277, 48311ā€“48317.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  30. Benov, L., Sztejnberg, L., and Fridovich, I. (1998) Critical evaluation of the use of hydroethidine as a measure of superoxide anion radical, Free Radic. Biol. Med. 25, 826ā€“831.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  31. Rajagopalan, S., Kurz, S., Munzel, T., Tarpey, M., Freeman, B. A., Griendling, K. K., and Harrison, D. G. (1996) Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone, J. Clin. Invest. 97, 1916ā€“1923.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  32. Rey, F. E., Cifuentes, M. E., Kiarash, A., Quinn, M. T., and Pagano, P. J. (2001) Novel competitive inhibitor of NAD(P)H oxidase assembly attenuates vascular O(2)(-) and systolic blood pressure in mice, Circ. Res. 89, 408ā€“414.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  33. Papapostolou, I., Patsoukis, N., and Georgiou, C. D. (2004) The fluorescence detection of superoxide radical using hydroethidine could be complicated by the presence of heme proteins, Anal. Biochem. 332, 290ā€“298.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  34. Patsoukis, N., Papapostolou, I., and Georgiou, C. D. (2005) Interference of non-specific peroxidases in the fluorescence detection of superoxide radical by hydroethidine oxidation: a new assay for H(2)O(2), Anal. Bioanal. Chem. 81, 1065ā€“1072.

    ArticleĀ  Google ScholarĀ 

  35. Fink, B., Dikalov, S., and Bassenge, E. (2000) A new approach for extracellular spin trapping of nitroglycerin-induced superoxide radicals both in vitro and in vivo, Free Radic. Biol. Med. 28, 121ā€“128.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  36. Kozlov, A. V., Szalay, L., Umar, F., Fink, B., Kropik, K., Nohl, H., Redl, H., and Bahrami, S. (2003) Epr analysis reveals three tissues responding to endotoxin by increased formation of reactive oxygen and nitrogen species, Free Radic. Biol. Med. 34, 1555ā€“1562.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  37. Thomson, L., Trujillo, M., Telleri, R., and Radi, R. (1995) Kinetics of cytochrome c2+ oxidation by peroxynitrite: implications for superoxide measurements in nitric oxide-producing biological systems, Arch. Biochem. Biophys. 319, 491ā€“497.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  38. LeBel, C. P., Ischiropoulos, H., and Bondy, S. C. (1992) Evaluation of the probe 2ā€²,7ā€²-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress, Chem. Res. Toxicol. 5, 227ā€“231.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  39. Kooy, N. W., Royall, J. A., and Ischiropoulos, H. (1997) Oxidation of 2ā€²,7ā€²-dichlorofluorescin by peroxynitrite, Free Radic. Res. 27, 245ā€“254.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  40. Rota, C., Chignell, C. F., and Mason, R. P. (1999) Evidence for free radical formation during the oxidation of 2ā€²-7ā€²-dichlorofluorescin to the fluorescent dye 2ā€²-7ā€²-dichlorofluorescein by horseradish peroxidase: possible implications for oxidative stress measurements, Free Radic. Biol. Med. 27, 873ā€“881.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  41. Tsuchiya, K., Jiang, J. J., Yoshizumi, M., Tamaki, T., Houchi, H., Minakuchi, K., Fukuzawa, K., and Mason, R. P. (1999) Nitric oxide-forming reactions of the water-soluble nitric oxide spin-trapping agent, MGD, Free Radic. Biol. Med. 27, 347ā€“355.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  42. Tsuchiya, K., Yoshizumi, M., Houchi, H., and Mason, R. P. (2000) Nitric oxide-forming reaction between the iron-N-methyl-D-glucamine dithiocarbamate complex and nitrite, J. Biol. Chem. 275, 1551ā€“1556.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

Download references

Acknowledgments

This work is supported by NIH/NHLBI grants HL077440 and HL081571 American Heart Association Scientist Development Grant (no. 0435189N to H.C.), American Diabetes Association Research Award (H.C.), Career Development Award from the Schweppe Foundation (H.C.), and Start-up Fund from the University of Chicago (H.C.).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Cai, H., Dikalov, S., Griendling, K.K., Harrison, D.G. (2007). Detection of Reactive Oxygen Species and Nitric Oxide in Vascular Cells and Tissues. In: Sreejayan, N., Ren, J. (eds) Vascular Biology Protocols. Methods in Molecular Medicineā„¢, vol 139. Humana Press. https://doi.org/10.1007/978-1-59745-571-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-571-8_20

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-574-3

  • Online ISBN: 978-1-59745-571-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics