Skip to main content

Evaluation of Endothelial Function by In Vivo Microscopy

  • Protocol
Vascular Biology Protocols

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 139))

Summary

This chapter describes a method that permits simultaneous measurement of leukocyte–endothelium interactions and endothelial nitric oxide (NO) levels in the microcirculation in vivo. The method is also useful to study the effect of NO replenishing therapy on adhesion of leukocytes to the vascular endothelium in acute and chronic inflammatory states of the cardiovascular system. This research approach requires the combination of two well-established physiology techniques, that is, intravital microscopy and real-time measurement of NO with microelectrodes. Intravital microscopy is considered the method of choice to monitor leukocyte–endothelial cell interactions in intact vascular beds of live animals. In vivo microscopy is currently used to study the endothelial cell phenotype of mice carrying mutations or deletion of targeted genes. Intravital microscopy is also used to study endothelial cell function in acute (e.g., ischemia-reperfusion injury) and chronic (e.g., hypercholesterolemia, hyperglycemia, and diabetes) inflammatory states of the cardiovascular system. NO sensors allow for continuous, amperometric quantification of NO levels in cells and organ tissues. Coupling of NO electrode technology with intravital microscopy has recently permitted to measure NO bioavailability in the normal and inflamed microcirculation. The method described here can be used to study in vivo how acute and chronic inflammatory states of the cardiovascular system alter endothelial function resulting in endothelial cell activation and damage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lefer, A.M., and Scalia, R. (2001) Nitric oxide in inflammation. In Physiology of Inflammation, Ley, K., Ed. New York, Oxford University Press, 447–472.

    Google Scholar 

  2. Davenpeck, K.L., Gauthier, T.W., and Lefer, A.M. (1994) Inhibition of endothelial-derived nitric oxide promotes P-selectin expression and actions in the rat microcirculation. Gastroenterology 107, 1050–1058.

    CAS  PubMed  Google Scholar 

  3. Granger, D.N., and Kubes, P. (1996) Nitric oxide as antiinflammatory agent. Methods Enzymol. 269, 434–442.

    Article  CAS  PubMed  Google Scholar 

  4. Gaboury, J., Woodman, R.C., Granger, D.N., Reinhardt, P., and Kubes, P. (1993) Nitric oxide prevents leuocyte adherence: role of superoxide. Am. J. Physiol. 265, H862–H867.

    CAS  PubMed  Google Scholar 

  5. Hayward, R., Campbell, B., Shin, Y.K., Scalia, R., and Lefer, A.M. (1999) Recombinant soluble P-selectin glycoprotein ligand-1 protects against myocardial ischemic reperfusion injury in cats. Cardiovasc. Res. 41, 65–76.

    Article  CAS  PubMed  Google Scholar 

  6. Scalia, R., Armstead, V.E., Minchenko, A.G., and Lefer, A.M. (1999) Essential role of P-selectin in the initiation of the inflammatory response induced by hemorrhage and reinfusion. J. Exp. Med. 189, 931–938.

    Article  CAS  PubMed  Google Scholar 

  7. Stokes, K.Y., Cooper, D., Tailor, A., and Granger, D.N. (2002) Hypercholesterolemia promotes inflammation and microvascular dysfunction: role of nitric oxide and superoxide. Free Radic. Biol. Med. 33, 1026–1036.

    Article  CAS  PubMed  Google Scholar 

  8. Rodenas, J., Mitjavila, M.T., and Carbonell, T. (1998) Nitric oxide inhibits superoxide production by inflammatory polymorphonuclear leukocytes. Am. J. Physiol. 274, C827–C830.

    CAS  PubMed  Google Scholar 

  9. Kierszenbaum, A.L. (2002) Histology and Cell Biology. St. Louis, Mosby.

    Google Scholar 

  10. Eriksson, E.E., Karlof, E., Lundmark, K., Rotzius, P., Hedin, U., and Xie X. (2005) Powerful inflammatory properties of large vein endothelium in vivo. Arterioscler. Thromb. Vasc. Biol. 25, 723–728.

    Article  CAS  PubMed  Google Scholar 

  11. Granger, D.N., and Kubes, P. (1994) The microcirculation and inflammation: modulation of leukocyte-endothelial cell adhesion. J. Leukoc. Biol. 55, 662–675.

    CAS  PubMed  Google Scholar 

  12. Stalker, T.J., Gong, Y., and Scalia, R. (2005) The calcium-dependent protease calpain causes endothelial dysfunction in type 2 diabetes. Diabetes 54, 1132–1140.

    Article  CAS  PubMed  Google Scholar 

  13. Stalker, T.J., Skvarka, C.B., and Scalia, R. (2003) A novel role for calpains in the endothelial dysfunction of hyperglycemia. FASEB J. 17, 1511–1513.

    CAS  PubMed  Google Scholar 

  14. Guo, J.P., Panday, M.M., Consigny, P.M., and Lefer, A.M. (1995) Mechanisms of vascular preservation by a novel NO donor following rat carotid artery intimal injury. Am. J. Physiol. 269, H1122–H1131.

    CAS  PubMed  Google Scholar 

  15. Zhang, X., Cardosa, L., Broderick, M., Fein, H., and Davies, I.R. (2000) Novel calibration method for nitric oxide microsensors by stoichiometrical generation of nitric oxide from SNAP. Electroanalysis 12, 425–428.

    Article  CAS  Google Scholar 

  16. Mempel, T.R., Scimone, M.L., Mora, J.R., and von Andrian, U.H. (2004) In vivo imaging of leukocyte trafficking in blood vessels and tissues. Curr. Opin. Immunol. 16, 406–417.

    Article  CAS  PubMed  Google Scholar 

  17. Borders, J.L., and Granger, H.J. (1984) An optical doppler intravital velocimeter. Microvasc. Res. 27, 117–127.

    Article  CAS  PubMed  Google Scholar 

  18. Perry, M.A., and Granger, D.N. (1991) Role of CD11/CD18 in shear rate-dependent leukocyte-endothelial cell interactions in cat mesenteric venules. J. Clin. Invest. 87, 1798–1804.

    Article  CAS  PubMed  Google Scholar 

  19. Smith, M.L., Long, D.S., Damiano, E.R., and Ley, K. (2003) Near-wall micro-PIV reveals a hydrodynamically relevant endothelial surface layer in venules in vivo. Biophys J 85, 637–645.

    Article  CAS  PubMed  Google Scholar 

  20. Bohlen, H.G. (1998) Mechanism of increased vessel wall nitric oxide concentrations during intestinal absorption. Am. J. Physiol. 275, H542–H550.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant R01 DK064344. The author is thankful to Mr. Brett Berzins, BS, for his help with the graphic work.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Scalia, R. (2007). Evaluation of Endothelial Function by In Vivo Microscopy. In: Sreejayan, N., Ren, J. (eds) Vascular Biology Protocols. Methods in Molecular Medicine™, vol 139. Humana Press. https://doi.org/10.1007/978-1-59745-571-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-571-8_14

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-574-3

  • Online ISBN: 978-1-59745-571-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics