Skip to main content

Isolation and Analysis of Human Natural Killer Cell Subsets

  • Protocol
Innate Immunity

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 415))

Summary

Natural killer (NK) cells were originally defined as mediators of spontaneous cytotoxicity against virus-infected and tumor cells. In human peripheral blood, the majority of NK cells can mediate cell lysis mainly through perforin and granzymes. It has been recently shown, however, that the majority of NK cells in human secondary lymphoid organs are primarily immunoregulatory by secreting cytokines immediately after activation and do not express perforin and granzymes. Because lymph nodes (LN) harbor 40% and peripheral blood only 2% of all lymphocytes in humans, this newly characterized NK cell compartment in LN and related tissues probably outnumbers perforin+cytolytic NK cells in our body. Although human NK cell biology has so far mainly studied peripheral blood NK cells, we have lately focused on human NK cells harbored in lymphoid tissues and identified procedures for their optimal isolation as well as their phenotypic and functional characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Robertson, M. J., and J. Ritz. (1990). Biology and clinical relevance of human natural killer cells. Blood 76:2421.

    CAS  PubMed  Google Scholar 

  2. Campbell, J. J., S. Qin, D. Unutmaz, D. Soler, K. E. Murphy, M. R. Hodge, L. Wu, and E. C. Butcher. (2001). Unique subpopulations of CD56+ NK and NK-T peripheral blood lymphocytes identified by chemokine receptor expression repertoire. J. Immunol. 166:6477.

    CAS  PubMed  Google Scholar 

  3. Jacobs, R., G. Hintzen, A. Kemper, K. Beul, S. Kempf, G. Behrens, K. W. Sykora, and R. E. Schmidt. (2001). CD56bright cells differ in their KIR repertoire and cytotoxic features from CD56dim NK cells. Eur. J. Immunol. 31:3121.

    Article  CAS  PubMed  Google Scholar 

  4. Cooper, M. A., T. A. Fehniger, S. C. Turner, K. S. Chen, B. A. Ghaheri, T. Ghayur, W. E. Carson, and M. A. Caligiuri. (2001). Human natural killer cells: a unique innate immunoregulatory role for the CD56bright subset. Blood 97:3146.

    Article  CAS  PubMed  Google Scholar 

  5. Fehniger, T. A., M. A. Cooper, G. J. Nuovo, M. Cella, F. Facchetti, M. Colonna, and M. A. Caligiuri. (2003). CD56bright natural killer cells are present in human lymph nodes and are activated by T cell-derived IL-2: a potential new link between adaptive and innate immunity. Blood 101:3052.

    Article  CAS  PubMed  Google Scholar 

  6. Ferlazzo, G., D. Thomas, S.-L. Lin, K. Goodman, B. Morandi, W. A. Muller, A. Moretta, and C. Munz. (2003). The abundant NK cells in human secondary lymphoid tissues require activation to express killer cell Ig-like receptors and become cytolytic. J. Immunol. 172:1455.

    Google Scholar 

  7. Westermann, J., and R. Pabst. (1992). Distribution of lymphocyte subsets and natural killer cells in the human body. Clin. Invest. 70:539.

    Article  CAS  Google Scholar 

  8. Trepel, F. (1974). Number and distribution of lymphocytes in man: a critical analysis. Klin. Wochenschr. 52:511.

    Article  CAS  PubMed  Google Scholar 

  9. Freud, A. G., B. Becknell, S. Roychowdhury, H. C. Mao, A. K. Ferketich, G. J. Nuovo, T. L. Hughes, T. B. Marburger, J. Sung, R. A. Baiocchi, M. Guimond, and M. A. Caligiuri. (2005). A human CD34(+) subset resides in lymph nodes and differentiates into CD56bright natural killer cells. Immunity 22:295–304.

    Article  CAS  PubMed  Google Scholar 

  10. Loza, M. J., and B. Perussia. (2004). The IL-12 signature: NK cell terminal CD56+high stage and effector functions. J. Immunol. 172:88–96.

    CAS  PubMed  Google Scholar 

  11. Mailliard, R. B., S. M. Alber, H. Shen, S. C. Watkins, J. M. Kirkwood, R. B. Herberman, and P. Kalinski. (2005). IL-18-induced CD83+CCR7+ NK helper cells. J. Exp. Med. 202:941–953.

    Article  CAS  PubMed  Google Scholar 

  12. Hastie, N. D., M. Dempster, M. G. Dunlop, A. M. Thompson, D. K. Green, and R. C. Allshire. (1990). Telomere reduction in human colorectal carcinoma and with ageing. Nature 346:866–868.

    Article  CAS  PubMed  Google Scholar 

  13. Figueroa, R., H. Lindenmaier, M. Hergenhahn, K. V. Nielsen, and P. Boukamp. (2000). Telomere erosion varies during in vitro aging of normal human fibroblasts from young and adult donors. Cancer Res. 60:2770–2774.

    CAS  PubMed  Google Scholar 

  14. Weng, N. P., B. L. Levine, C. H. June, and R. J. Hodes. (1995). Human naive and memory T lymphocytes differ in telomeric length and replicative potential. Proc. Natl. Acad. Sci. U. S. A. 92:11091–11094.

    Article  CAS  PubMed  Google Scholar 

  15. Rufer, N., W. Dragowska, G. Thornbury, E. Roosnek, and P. M. Lansdorp. (1998). Telomere length dynamics in human lymphocyte subpopulations measured by flow cytometry. Nat. Biotechnol. 8:743–747.

    Article  Google Scholar 

  16. Serakinci, N., and J. Koch. (1999). Detection and sizing of telomeric repeat DNA in situ. A performance comparison of PRINS and PNA assays. Nat. Biotechnol. 17:200–201.

    Article  CAS  PubMed  Google Scholar 

  17. Betts, M. R., J. M. Brenchley, D. A. Price, S. C. De Rosa, D. C. Douek, M. Roederer, and R. A. Koup. (2003). Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degranulation. J. Immunol. Methods 281:65–78.

    Article  CAS  PubMed  Google Scholar 

  18. Penack, O., C. Gentilini, L. Fischer, A. M. Asemissen, C. Scheibenbogen, E. Thiel, and L. Uharek. (2005). CD56dimCD16neg cells are responsible for natural cytotoxicity against tumor targets. Leukemia 19:835–840.

    Article  CAS  PubMed  Google Scholar 

  19. Hultdin, M., E. Grönlund, K.-F. Norrback, E. Eriksson-Lindström, T. Just, and G. Roos. (1998). Telomere analysis by fluorescence in situ hybridization and flow cytometry. Nucleic Acids Res. 26:3651–3656.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc.

About this protocol

Cite this protocol

Ferlazzo, G. (2008). Isolation and Analysis of Human Natural Killer Cell Subsets. In: Ewbank, J., Vivier, E. (eds) Innate Immunity. Methods in Molecular Biology™, vol 415. Humana Press. https://doi.org/10.1007/978-1-59745-570-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-570-1_12

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-746-4

  • Online ISBN: 978-1-59745-570-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics