SUMO Protocols pp 141-152 | Cite as

Regulation of Transcription Factor Activity by SUMO Modification

  • Jian Ouyang
  • Alvaro Valin
  • Grace Gill
Part of the METHODS IN MOLECULAR BIOLOGY™ book series (MIMB, volume 497)


Post-translational modification by SUMO is an important mechanism to regulate transcription. Sumoyla-tion has diverse effects on substrate activity, but in most cases reported to date sumoylation of transcription factors correlated with transcriptional repression. Here we describe general strategies to address how post-translational modification by SUMO regulates the activity of a DNA-binding transcription factor.

Key words

Transcription factor sumoylation SUMO fusion reporter gene assay 


  1. 1.
    Gill, G. (2004) SUMO and ubiquitin in the nucleus: different functions, similar mechanisms? Genes Dev. 18, 2046–2059.PubMedCrossRefGoogle Scholar
  2. 2.
    Gill, G. (2005) Something about SUMO inhibits transcription. Curr. Opin. Genet. Dev. 15, 536–541.PubMedCrossRefGoogle Scholar
  3. 3.
    Girdwood, D. W., Tatham, M. H., and Hay, R. T. (2004) SUMO and transcriptional regulation. Semin. Cell Dev. Biol. 15, 201–210.PubMedCrossRefGoogle Scholar
  4. 4.
    Gill, G. (2003) Post-translational modification by the small ubiquitin-related modifier SUMO has big effects on transcription factor activity. Curr. Opin. Genet. Dev. 13, 108–113.PubMedCrossRefGoogle Scholar
  5. 5.
    Melchior, F. (2000) SUMO—nonclassical ubiquitin. Annu. Rev. Cell Dev. Biol. 16, 591–626.PubMedCrossRefGoogle Scholar
  6. 6.
    Johnson, E. S. (2004) Protein modification by SUMO. Annu. Rev. Biochem. 73, 355–382.PubMedCrossRefGoogle Scholar
  7. 7.
    Huang, T. T., Wuerzberger-Davis, S. M., Wu, Z. H., and Miyamoto, S. (2003) Sequential modification of NEMO/IKKgamma by SUMO-1 and ubiquitin mediates NF-kap-paB activation by genotoxic stress. Cell 115, 565–576.PubMedCrossRefGoogle Scholar
  8. 8.
    Ross, S., Best, J. L., Zon, L. I., and Gill, G. (2002) SUMO-1 modification represses Sp3 transcriptional activation and modulates its subnuclear localization. Mol. Cell 10, 831–842.PubMedCrossRefGoogle Scholar
  9. 9.
    Holmstrom, S., Van Antwerp, M. E., and Iniguez-Lluhi, J. A. (2003) Direct and distinguishable inhibitory roles for SUMO isoforms in the control of transcriptional synergy. Proc. Natl. Acad. Sci. USA 100, 15758–15763.PubMedCrossRefGoogle Scholar
  10. 10.
    Muromoto, R., Ishida, M., Sugiyama, K., Sekine, Y., Oritani, K., Shimoda, K., and Matsuda, T. (2006) Sumoylation of Daxx regulates IFN-induced growth suppression of B lymphocytes and the hormone receptor-mediated transactivation. J. Immunol. 177, 1160–1170.PubMedGoogle Scholar
  11. 11.
    Yurchenko, V., Xue, Z., and Sadofsky, M. J. (2006) SUMO modification of human XRCC4 regulates its localization and function in DNA double-strand break repair. Mol. Cell. Biol. 26, 1786–1794.PubMedCrossRefGoogle Scholar
  12. 12.
    Ayaydin, F., and Dasso, M. (2004) Distinct in vivo dynamics of vertebrate SUMO para-logues. Mol. Biol. Cell 15, 5208–5218.PubMedCrossRefGoogle Scholar
  13. 13.
    Degerny, C., Monte, D., Beaudoin, C., Jaf-fray, E., Portois, L., Hay, R. T., de Launoit, Y., and Baert, J. L. (2005) SUMO modification of the Ets-related transcription factor ERM inhibits its transcriptional activity. J. Biol. Chem. 280, 24330–24338.PubMedCrossRefGoogle Scholar
  14. 14.
    Sapetschnig, A., Rischitor, G., Braun, H., Doll, A., Schergaut, M., Melchior, F., and Suske, G. (2002) Transcription factor Sp3 is silenced through SUMO modification by PIAS1. EMBO J. 21, 5206–5215.PubMedCrossRefGoogle Scholar
  15. 15.
    Cheng, J., Perkins, N. D., and Yeh, E. T. (2005) Differential regulation of c-Jun-dependent transcription by SUMO-specific proteases. J. Biol. Chem. 280, 14492– 14498.PubMedCrossRefGoogle Scholar
  16. 16.
    Shalizi, A., Gaudilliere, B., Yuan, Z., Stegmuller, J., Shirogane, T., Ge, Q., Tan, Y., Schulman, B., Harper, J. W., and Bonni, A. (2006) A calcium-regulated MEF2 sumoylation switch controls postsynaptic differentiation. Science 311, 1012–1017.PubMedCrossRefGoogle Scholar
  17. 17.
    Desterro, J. M., Rodriguez, M. S., and Hay, R. T. (1998) SUMO-1 modification of Ika-ppaBalpha inhibits NF-kappaB activation. Mol. Cell 2, 233–239.PubMedCrossRefGoogle Scholar
  18. 18.
    Hoege, C., Pfander, B., Moldovan, G. L., Pyrowolakis, G., and Jentsch, S. (2002) RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419, 135–141.PubMedCrossRefGoogle Scholar
  19. 19.
    Long, J., Wang, G., He, D., and Liu, F. (2004) Repression of Smad4 transcriptional activity by SUMO modification. Biochem. J. 379, 23–29.PubMedCrossRefGoogle Scholar
  20. 20.
    Ihara, M., Yamamoto, H., and Kikuchi, A. (2005) SUMO-1 modification of PIASy, an E3 ligase, is necessary for PIASy-depend-ent activation of Tcf-4. Mol. Cell. Biol. 25, 3506–3518.PubMedCrossRefGoogle Scholar
  21. 21.
    Gill, G., and Ptashne, M. (1988) Negative effect of the transcriptional activator GAL4. Nature 334, 721–724.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Jian Ouyang
    • 1
  • Alvaro Valin
    • 1
  • Grace Gill
    • 1
  1. 1.Department of Anatomy and Cellular BiologyTufts University School of MedicineBostonUSA

Personalised recommendations