SUMO Protocols pp 225-239 | Cite as

Preparation of SUMO Proteases and Kinetic Analysis Using Endogenous Substrates

  • David Reverter
  • Christopher D. Lima
Part of the METHODS IN MOLECULAR BIOLOGY™ book series (MIMB, volume 497)


SUMO proteases catalyze two reactions, deconjugation of SUMO from substrates and processing of precursor SUMO isoforms to prepare SUMO for conjugation. The SUMO protease family includes two members in yeast (Ulp1 and Ulp2) and as many as six members in human (SENP1-3, SENP5-7). SENP/Ulp proteases each contain conserved C-terminal domains that catalyze protease activity. The C-terminal protease domains exhibit unique specificities during SUMO processing and deconjugation in vitro. While there are many available reagents to assess these activities, including fusion proteins and chemically modified SUMO isoforms, our studies have indicated that the composition of substrates C-terminal to the scissile bond can substantively influence the activity of the protease. As such, we have relied extensively on assays that utilize endogenous substrates, namely wild-type SUMO precursors and SUMO conjugated substrates. In this chapter, we will describe methodological details for purification and characterization of SUMO precursors, SUMO conjugated substrates, and SUMO proteases. We will also describe methods for kinetic analysis of SUMO deconjugation and maturation using endogenous substrates.

Key words

SUMO SENP isopeptidase deconjugation SUMO precursor processing protein purification 


  1. 1.
    Hershko, A. and Ciechanover, A. (1998) The Ubiquitin System. Annu Rev Biochem. 67, 425 – 479.PubMedCrossRefGoogle Scholar
  2. 2.
    Saitoh, H., Pu, R.T. and Dasso, M. (1997) SUMO-1: wrestling with a new ubiquitin-related modifier. TIBS. 22, 374 – 376.PubMedCrossRefGoogle Scholar
  3. 3.
    Towerbach, D., McKay, E.M., Yeh, E.T., Gabbay, K.H. and Bohren, K.M.T (2005) A proline-90 residue unique to SUMO-4 prevents maturation and sumoylation. Biochem Biophys Res Commun 337, 517 – 520.CrossRefGoogle Scholar
  4. 4.
    Melchior, F., Schergaut, M. and Pichler, A. (2003) SUMO: ligases, isopeptidases and nuclear pores. TIBS 28, 612 – 618.PubMedCrossRefGoogle Scholar
  5. 5.
    Yeh, E.T., Gong, L. and Kamitani, T. (2000) Ubiquitin-like proteins: new wines in new bottles. Gene 248, 1 – 14.PubMedCrossRefGoogle Scholar
  6. 6.
    Yamaguchi, T. et al. (2005) Mutation of SENP1/SuPr-2 reveals an essential role for desumoylation in mouse development. Mol Cell Biol 25, 5171 – 82.PubMedCrossRefGoogle Scholar
  7. 7.
    Di Bacco, A. et al. (2006) The SUMO-specific protease SENP5 is required for cell division. Mol Cell Biol 26, 4489 – 4498.CrossRefGoogle Scholar
  8. 8.
    Mukhopadhyay, D., and Dasso, M. (2007) Modification in reverse: the SUMO proteases. Trends Biochem Sci. 32, 286 – 295.PubMedCrossRefGoogle Scholar
  9. 9.
    Reverter, D. and Lima, C.D. (2004) A basis for SUMO protease specificity provided by analysis of human SENP2 and a SENP2-SUMO complex.Structure 12, 1519 – 1531.PubMedCrossRefGoogle Scholar
  10. 10.
    Reverter, D. and Lima, C.D. (2006) Structural basis for SENP2 protease interactions with SUMO precursors and conjugated substrates. Nat Struct Mol Biol. 13, 1060 – 1068.PubMedCrossRefGoogle Scholar
  11. 11.
    Shen, L.N., Dong, C., Liu, H., Naismith, J.H. and Hay, R.T.T. (2006) The structure of SENP1-SUMO-2 complex suggests a structural basis for discrimination between SUMO paralogues during processing. Bio-chem J. 397, 279 – 288.Google Scholar
  12. 12.
    Shen, L., Tatham, M.H., Dong, C., Zagorska, A., Naismith, J.H. and Hay, R.T. (2006) SUMO protease SENP1 induces isomerization of the scissile peptide bond. Nat Struct Mol Biol. 13, 1069 – 1077.PubMedCrossRefGoogle Scholar
  13. 13.
    Dang, L.C., Melandri, F.D. and Stein, R.L. (1998) Kinetic and Mechanistic Studies on the Hydrolysis of Ubiquitin C-Termi-nal 7—Amido—4—Methylcoumarin by Deu-biquitinating Enzymes. Biochemistry 37, 1868 – 1879.PubMedCrossRefGoogle Scholar
  14. 14.
    Hemelaar, J., Borodovsky, A., Kessler, B.M., Reverter, D., Cook, J. et al. (2004) Specific and covalent targeting of conjugating and deconjugating enzymes of ubiquitin-like proteins. Mol. Cell Biol 24, 84 – 95.PubMedCrossRefGoogle Scholar
  15. 15.
    Li, S.J. and Hochstrasser, M. (1999) A new protease required for cell-cycle progression in yeast.Nature 398, 246 – 251.PubMedCrossRefGoogle Scholar
  16. 16.
    Mossessova, E. and Lima, C.D. (2000) Ulp1-SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast. Mol. Cell 5, 865 – 876.PubMedCrossRefGoogle Scholar
  17. 17.
    Bernier-Villamor, V., Sampson, D.A., Matu-nis, M.J., and Lima, C.D. (2002) Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1. Cell 108, 345 – 356.PubMedCrossRefGoogle Scholar
  18. 18.
    Yunus, A.A. and Lima, C.D. (2005) Purification and activity assays for Ubc9, the ubiquitin conjugating enzyme for the small ubiquitin-like modifier SUMO. Methods Enzymol. 398, 74 – 87.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • David Reverter
    • 1
  • Christopher D. Lima
    • 2
  1. 1.Institut de Biotecnologia i de BiomedicinaUniversitat Autonoma de BarcelonaBarcelonaSpain
  2. 2.Structural Biology ProgramSloan-Kettering InstituteNew YorkUSA

Personalised recommendations