SUMO Protocols pp 153-164 | Cite as

Characterization of the Effects and Functions of Sumoylation Through Rapamycin-Mediated Heterodimerization

  • Shanshan Zhu
  • Michael J. Matunis
Part of the METHODS IN MOLECULAR BIOLOGY™ book series (MIMB, volume 497)


Post-translational modification of proteins, such as phosphorylation, ubiquitination, and SUMO modification, is an important means of regulating a variety of cellular activities. SUMOs (Small Ubiquitin related Modifiers) are covalently conjugated to lysine residues of many proteins by a mechanism that parallels ubiquitination (1). The effects of sumoylation, however, are distinct from ubiquitination. Sumoyla-tion does not directly control protein stability, but regulates proteins through various mechanisms that include modulation of protein—protein interactions, protein—nucleic acid interactions, subcellular protein localization, and enzymatic activity (1, 2, 3, 4). There are many examples, however, where the molecular bases for the effects of sumoylation on protein function and on cellular processes remain unclear. Here, we outline the use of an inducible and reversible sumoylation system, based on rapamycin heterodimeriza-tion, as a novel tool to characterize the functions of sumoylation in mammalian cells.

Key words

SUMO conjugation RanGAP1 rapamycin heterodimerization Ariad 


  1. 1.
    Muller, S., Hoege, C., Pyrowolakis, G. and Jentsch, S. (1994) SUMO, ubiquitin's mysterious cousin. Nat. Rev. Mol. Cel. Biol. 2, 202–210.CrossRefGoogle Scholar
  2. 2.
    Johnson, E. S. (2005) Protein modification by SUMO. Annu. Rev. Biochem. 73, 355–382.CrossRefGoogle Scholar
  3. 3.
    Matunis, M. J. and Pickart, C. M. (2005) Beginning at the end with SUMO. Nat. Struct. Mol. Biol. 12, 565–566.PubMedCrossRefGoogle Scholar
  4. 4.
    Kerscher, O. (2007) SUMO junction-what's your function? New insights through SUMO-interacting motifs. EMBO Rep. 8, 550–555.PubMedCrossRefGoogle Scholar
  5. 5.
    Brown, E. J., Albers, M. W., Shin, T. B., Ichikawa, K., Keith, C. T., Lane, W. S. and Schreiber, S. L. (1994) A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 369, 756–758.PubMedCrossRefGoogle Scholar
  6. 6.
    Sabatini, D. M., Erdjument-Bromage, H., Lui, M., Tempst, P. and Snyder, S. H. (1994) RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell78, 35–43.PubMedCrossRefGoogle Scholar
  7. 7.
    Chen, J., Zheng, X. F., Brown, E. J. and Schreiber, S. L. (1995) Identification of an 11-kDa FKBP12-rapamycin-binding domain within the 289-kDa FKBP12-rapamycin-associated protein and characterization of a critical serine residue. Proc. Natl. Acad. Sci. 92, 4947–4951.PubMedCrossRefGoogle Scholar
  8. 8.
    Klemm, J. D., Schreiber, S. L. and Crabtree, G. R. (1998) Dimerization as a regulatory mechanism in signal transduction. Annu. Rev. Immunol. 16, 569–592.PubMedCrossRefGoogle Scholar
  9. 9.
    Pollock, R., and Clackson, T. (2002) Dimer-izer-regulated gene expression. Curr. Opin. Biotechnol. 13, 459–467.PubMedCrossRefGoogle Scholar
  10. 10.
    Hoogenraad, C. C., Wulf, P., Schiefer-meier, N., Stepanova, T., Galjart, N., Small, J. V., Grosveld, F., de Zeeuw, C. I. and Akhmanova, A. (2003) Bicaudal D induces selective dynein-mediated microtubule minus end-directed transport. EMBO. J. 22, 6004–6015.PubMedCrossRefGoogle Scholar
  11. 11.
    Zhu, S., Zhang, H. and Matunis, M. J. (2006) SUMO modification through rapamy-cin-mediated heterodimerization reveals a dual role for Ubc9 in targeting RanGAP1 to nuclear pore complexes. Exp. Cell Res. 312, 1042–1049.PubMedCrossRefGoogle Scholar
  12. 12.
    Matunis, M. J., Coutavas, E. and Blobel, G. (1996) A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. J. Cell Biol. 135, 1457–1470.PubMedCrossRefGoogle Scholar
  13. 13.
    Matunis, M. J., Wu, J. and Blobel, G. (1998) SUMO-1 modification and its role in targeting the Ran GTPase-activating protein, RanGAP1, to the nuclear pore complex. J. Cell Biol. 140, 499–509.PubMedCrossRefGoogle Scholar
  14. 14.
    Jakobs, A., Koehnke, J., Himstedt, F., Funk, M., Korn, B., Gaestel, M. and Niedenthal, R. (2007) Ubc9 fusion-directed SUMOyla-tion (UFDS): a method to analyze function of protein SUMOylation. Nat. Methods. 4, 245–250.PubMedCrossRefGoogle Scholar
  15. 15.
    Harding, M. W., Galat, A., Uehling, D. E. and Schreiber, S. L. (1989) A receptor for the immunosuppressant FK506 is a cis-trans peptidyl-prolyl isomerase. Nature 341, 758–760.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Shanshan Zhu
    • 1
  • Michael J. Matunis
    • 1
  1. 1.Department of Biochemistry and Molecular BiologyBloomberg School of Public Health, Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations