The SUMO System: An Overview

  • Helle D. Ulrich
Part of the METHODS IN MOLECULAR BIOLOGY™ book series (MIMB, volume 497)


Post-translational modification by SUMO is now recognized as an important regulatory method employed by the cell to reversibly modulate the activity, stability, or localization of intracellular proteins. A dedicated enzymatic machinery is involved in the processing, attachment, and removal of the modifier with high selectivity. SUMO modification generally alters the properties of the modified target by influencing—either positively or negatively—its interactions with other cellular factors. As a consequence, the SUMO system contributes to the regulation of numerous biological pathways, ranging from nucleocytoplasmic transport to the repression of transcriptional activity and the maintenance of genome stability by its influence on DNA recombination and repair. This chapter gives a brief overview over the enzymes of the SUMO system, its regulation, and its functions.


SUMO SUMO-activating enzyme (E1) SUMO-conjugating enzyme (E2) SUMO ligase (E3) SUMO-specific isopeptidase (SENP) SUMO interaction motif (SIM) SUMO-binding motif (SBM) 



I apologize to those researchers whose work could not be cited directly in this review due to space constraints. Work in this laboratory is supported by Cancer Research UK.


  1. 1.
    Schwartz, D. C. and Hochstrasser, M. (2003) A superfamily of protein tags: ubiquitin, SUMO and related modifiers. Trends Biochem. Sci. 28, 321–328.PubMedCrossRefGoogle Scholar
  2. 2.
    Kerscher, O., Felberbaum, R., and Hochstrasser, M. (2006) Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu. Rev. Cell Dev. Biol. 22, 159–180.PubMedCrossRefGoogle Scholar
  3. 3.
    Johnson, E. S. (2004) Protein modification by SUMO. Annu. Rev. Biochem. 73, 355–382.PubMedCrossRefGoogle Scholar
  4. 4.
    Geiss-Friedlander, R. and Melchior, F. (2007) Concepts in sumoylation: a decade on. Nat. Rev. Mol. Cell. Biol. 8, 947–956.PubMedCrossRefGoogle Scholar
  5. 5.
    Owerbach, D., McKay, E. M., Yeh, E. T., Gabbay, K. H., and Bohren, K. M. (2005) A proline-90 residue unique to SUMO-4 prevents maturation and sumoylation. Biochem. Biophys. Res. Commun. 337, 517–520.PubMedCrossRefGoogle Scholar
  6. 6.
    Mukhopadhyay, D. and Dasso, M. (2007) Modification in reverse: the SUMO proteases. Trends Biochem. Sci. 32, 286–295.PubMedCrossRefGoogle Scholar
  7. 7.
    Saitoh, H. and Hinchey, J. (2000) Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J. Biol. Chem. 275, 6252–6258.PubMedCrossRefGoogle Scholar
  8. 8.
    Vertegaal, A. C. (2007) Small ubiquitin-related modifiers in chains. Biochem. Soc. Trans. 35, 1422–1423.PubMedCrossRefGoogle Scholar
  9. 9.
    Bylebyl, G. R., Belichenko, I., and Johnson, E. S. (2003) The SUMO isopeptidase Ulp2 prevents accumulation of SUMO chains in yeast. J. Biol. Chem. 278, 44113–44120.PubMedCrossRefGoogle Scholar
  10. 10.
    Matic, I., van Hagen, M., Schimmel, J., Macek, B., Ogg, S. C., Tatham, M. H., Hay, R. T., Lamond, A. I., Mann, M., and Vertegaal, A. C. (2008) In vivo identification of human small ubiquitin-like modifier polymerization sites by high accuracy mass spectrometry and an in vitro to in vivo strategy. Mol. Cell. Proteomics 7, 132–144.PubMedGoogle Scholar
  11. 11.
    Tatham, M. H., Jaffray, E., Vaughan, O. A., Desterro, J. M., Botting, C. H., Naismith, J. H., and Hay, R. T. (2001) Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J. Biol. Chem. 276, 35368–35374.PubMedCrossRefGoogle Scholar
  12. 12.
    Windecker, H. and Ulrich, H. D. (2008) Architecture and assembly of poly-SUMO chains on PCNA in Saccharomyces cerevisiae. J. Mol. Biol. 376, 221–231.PubMedCrossRefGoogle Scholar
  13. 13.
    Cheng, C. H., Lo, Y. H., Liang, S. S., Ti, S. C., Lin, F. M., Yeh, C. H., Huang, H. Y., and Wang, T. F. (2006) SUMO modifications control assembly of synaptonemal complex and polycomplex in meiosis of Saccharomyces cerevisiae. Genes Dev. 20, 2067–2081.PubMedCrossRefGoogle Scholar
  14. 14.
    Johnson, E. S., Schwienhorst, I., Dohmen, R. J., and Blobel, G. (1997) The ubiquitin-like protein Smt3p is activated for conjugation to other proteins by an Aos1p/Uba2p heterodimer. EMBO J. 16, 5509–5519PubMedCrossRefGoogle Scholar
  15. 15.
    Lois, L. M. and Lima, C. D. (2005) Structures of the SUMO E1 provide mechanistic insights into SUMO activation and E2 recruitment to E1. EMBO J. 24, 439–451.PubMedCrossRefGoogle Scholar
  16. 16.
    Johnson, E. S. and Blobel, G. (1997) Ubc9p is the conjugating enzyme for the ubiquitin-like protein Smt3p. J. Biol. Chem. 272, 26799–26802.PubMedCrossRefGoogle Scholar
  17. 17.
    Tong, H., Hateboer, G., Perrakis, A., Bernards, R., and Sixma, T. K. (1997) Crystal structure of murine/human Ubc9 provides insight into the variability of the ubiquitin-conjugating system. J. Biol. Chem. 272, 21381–21387.PubMedCrossRefGoogle Scholar
  18. 18.
    Bernier-Villamor, V., Sampson, D. A., Matunis, M. J., and Lima, C. D. (2002) Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1. Cell 108, 345–356.PubMedCrossRefGoogle Scholar
  19. 19.
    Johnson, E. S. and Blobel, G. (1999) Cell cycle-regulated attachment of the ubiquitin-related protein SUMO to the yeast septins. J. Cell Biol. 147, 981–994.PubMedCrossRefGoogle Scholar
  20. 20.
    Hietakangas, V., Anckar, J., Blomster, H. A., Fujimoto, M., Palvimo, J. J., Nakai, A., and Sistonen, L. (2006) PDSM, a motif for phosphorylation-dependent SUMO modification. Proc. Natl. Acad. Sci. USA 103, 45–50.PubMedCrossRefGoogle Scholar
  21. 21.
    Yang, S. H., Galanis, A., Witty, J., and Sharrocks, A. D. (2006) An extended consensus motif enhances the specificity of substrate modification by SUMO. EMBO J. 25, 5083–5093.PubMedCrossRefGoogle Scholar
  22. 22.
    Hochstrasser, M. (2001) SP-RING for SUMO: new functions bloom for a ubiquitin-like protein. Cell 107, 5–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Palvimo, J. J. (2007) PIAS proteins as regulators of small ubiquitin-related modifier (SUMO) modifications and transcription. Biochem. Soc. Trans. 35, 1405–1408.PubMedCrossRefGoogle Scholar
  24. 24.
    Sharrocks, A. D. (2006) PIAS proteins and transcriptional regulation-more than just SUMO E3 ligases? Genes Dev. 20, 754–758.PubMedCrossRefGoogle Scholar
  25. 25.
    Johnson, E. S. and Gupta, A. A. (2001) An E3-like factor that promotes SUMO conjugation to the yeast septins. Cell 106, 735–744.PubMedCrossRefGoogle Scholar
  26. 26.
    Andrews, E. A., Palecek, J., Sergeant, J., Taylor, E., Lehmann, A. R., and Watts, F. Z. (2005) Nse2, a component of the Smc5-6 complex, is a SUMO ligase required for the response to DNA damage. Mol. Cell. Biol. 25, 185–196.PubMedCrossRefGoogle Scholar
  27. 27.
    Potts, P. R. and Yu, H. (2005) Human MMS21/NSE2 is a SUMO ligase required for DNA repair. Mol. Cell. Biol. 25, 7021–7032.PubMedCrossRefGoogle Scholar
  28. 28.
    Zhao, X. and Blobel, G. (2005) A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization. Proc. Natl. Acad. Sci. USA 102, 4777–4782.PubMedCrossRefGoogle Scholar
  29. 29.
    Pichler, A., Knipscheer, P., Saitoh, H., Sixma, T. K., and Melchior, F. (2004) The RanBP2 SUMO E3 ligase is neither HECT- nor RING-type. Nat. Struct. Mol. Biol. 11, 984–991.PubMedCrossRefGoogle Scholar
  30. 30.
    Reverter, D. and Lima, C. D. (2005) Insights into E3 ligase activity revealed by a SUMO-RanGAP1-Ubc9-Nup358 complex. Nature 435, 687–692.PubMedCrossRefGoogle Scholar
  31. 31.
    Carbia-Nagashima, A., Gerez, J., Perez-Castro, C., Paez-Pereda, M., Silberstein, S., Stalla, G. K., Holsboer, F., and Arzt, E. (2007) RSUME, a small RWD-containing protein, enhances SUMO conjugation and stabilizes HIF-1alpha during hypoxia. Cell 131, 309–323.PubMedCrossRefGoogle Scholar
  32. 32.
    Kagey, M. H., Melhuish, T. A., and Wotton, D. (2003) The polycomb protein Pc2 is a SUMO E3. Cell 113, 127–137.PubMedCrossRefGoogle Scholar
  33. 33.
    Wotton, D. and Merrill, J. C. (2007) Pc2 and SUMOylation. Biochem. Soc. Trans. 35, 1401–1404.PubMedCrossRefGoogle Scholar
  34. 34.
    Zhao, X., Sternsdorf, T., Bolger, T. A., Evans, R. M., and Yao, T. P. (2005) Regulation of MEF2 by histone deacetylase 4- and SIRT1 deacetylase-mediated lysine modifications. Mol. Cell. Biol. 25, 8456–8464.PubMedCrossRefGoogle Scholar
  35. 35.
    Hay, R. T. (2007) SUMO-specific proteases: a twist in the tail. Trends Cell Biol. 17, 370–376.PubMedCrossRefGoogle Scholar
  36. 36.
    Li, S. -J. and Hochstrasser, M. (2000) The yeast ULP2 (SMT4) gene encodes a novel protease specific for the ubiquitin-like Smt3 protein. Mol. Cell. Biol. 20, 2367–2377.PubMedCrossRefGoogle Scholar
  37. 37.
    Li, S. J. and Hochstrasser, M. (1999) A new protease required for cell-cycle progression in yeast. Nature 398, 246–251.PubMedCrossRefGoogle Scholar
  38. 38.
    Hayashi, T., Seki, M., Maeda, D., Wang, W., Kawabe, Y., Seki, T., Saitoh, H., Fukagawa, T., Yagi, H., and Enomoto, T. (2002) Ubc9 is essential for viability of higher eukaryotic cells. Exp. Cell Res. 280, 212–221.PubMedCrossRefGoogle Scholar
  39. 39.
    Nacerddine, K., Lehembre, F., Bhaumik, M., Artus, J., Cohen-Tannoudji, M., Babinet, C., Pandolfi, P. P., and Dejean, A. (2005) The SUMO pathway is essential for nuclear integrity and chromosome segregation in mice. Dev. Cell 9, 769–779.PubMedCrossRefGoogle Scholar
  40. 40.
    Seufert, W., Futcher, B., and Jentsch, S. (1995) Role of a ubiquitin-conjugating enzyme in degradation of S- and M-phase cyclins. Nature 373, 78–81.PubMedCrossRefGoogle Scholar
  41. 41.
    Tanaka, K., Nishide, J., Okazaki, K., Kato, H., Niwa, O., Nakagawa, T., Matsuda, H. Kawamukai, M., and Murakami, Y. (1999) Characterization of a fission yeast SUMO-1 homologue, pmt3p, required for multiple nuclear events, including the control of telomere length and chromosome segregation. Mol. Cell. Biol. 19, 8660–8672.PubMedGoogle Scholar
  42. 42.
    Girdwood, D. W., Tatham, M. H., and Hay, R. T. (2004) SUMO and transcriptional regulation. Semin. Cell Dev. Biol. 15, 201–210.PubMedCrossRefGoogle Scholar
  43. 43.
    Muller, S., Ledl, A., and Schmidt, D. (2004) SUMO: a regulator of gene expression and genome integrity. Oncogene 23, 1998–2008.PubMedCrossRefGoogle Scholar
  44. 44.
    Melchior, F., Schergaut, M., and Pichler, A. (2003) SUMO: ligases, isopeptidases and nuclear pores. Trends Biochem. Sci. 28, 612–618.PubMedCrossRefGoogle Scholar
  45. 45.
    Ulrich, H. D. (2005) Mutual interactions between the SUMO and ubiquitin systems: a plea of no contest. Trends Cell Biol. 15, 525–532.PubMedCrossRefGoogle Scholar
  46. 46.
    Seeler, J. S., Bischof, O., Nacerddine, K., and Dejean, A. (2007) SUMO, the three Rs and cancer. Curr. Top. Microbiol. Immunol. 313, 49–71.PubMedCrossRefGoogle Scholar
  47. 47.
    Watts, F. Z. (2007) The role of SUMO in chromosome segregation. Chromosoma 116, 15–20.PubMedCrossRefGoogle Scholar
  48. 48.
    Gill, G. (2004) SUMO and ubiquitin in the nucleus: different functions, similar mechanisms? Genes Dev. 18, 2046–2059.PubMedCrossRefGoogle Scholar
  49. 49.
    Kerscher, O. (2007) SUMO junction-what's your function? New insights through SUMO-interacting motifs. EMBO Rep. 8, 550–555.PubMedCrossRefGoogle Scholar
  50. 50.
    Steinacher, R. and Schar, P. (2005) Functionality of human thymine DNA glycosylase requires SUMO-regulated changes in protein conformation. Curr. Biol. 15, 616–623.PubMedCrossRefGoogle Scholar
  51. 51.
    Gill, G. (2005) Something about SUMO inhibits transcription. Curr. Opin. Genet. Dev. 15, 536–541.PubMedCrossRefGoogle Scholar
  52. 52.
    Ross, S., Best, J. L., Zon, L. I., and Gill, G. (2002) SUMO-1 modification represses Sp3 transcriptional activation and modulates its subnuclear localization. Mol. Cell 10, 831–842.PubMedCrossRefGoogle Scholar
  53. 53.
    Lin, D. Y., Huang, Y. S., Jeng, J. C., Kuo, H. Y., Chang, C. C., Chao, T. T., Ho, C. C., Chen, Y. C., Lin, T. P., Fang, H. I. et al. (2006) Role of SUMO-interacting motif in Daxx SUMO modification, subnuclear localization, and repression of sumoylated transcription factors. Mol. Cell 24, 341–354.PubMedCrossRefGoogle Scholar
  54. 54.
    Branzei, D. and Foiani, M. (2005) The DNA damage response during DNA replication. Curr. Opin. Cell Biol. 17, 568–575.PubMedCrossRefGoogle Scholar
  55. 55.
    Denison, C., Rudner, A. D., Gerber, S. A., Bakalarski, C. E., Moazed, D., and Gygi, S. P. (2005) A proteomic strategy for gaining insights into protein sumoylation in yeast. Mol. Cell. Proteomics 4, 246–254.PubMedCrossRefGoogle Scholar
  56. 56.
    Panse, V. G., Hardeland, U., Werner, T., Kuster, B., and Hurt, E. (2004) A proteome-wide approach identifies sumoylated substrate proteins in yeast. J. Biol. Chem. 279, 41346–41351.PubMedCrossRefGoogle Scholar
  57. 57.
    Vertegaal, A. C., Ogg, S. C., Jaffray, E., Rodriguez, M. S., Hay, R. T., Andersen, J. S., Mann, M., and Lamond, A. I. (2004) A proteomic study of SUMO-2 target proteins. J. Biol. Chem. 279, 33791–33798.PubMedCrossRefGoogle Scholar
  58. 58.
    Wohlschlegel, J. A., Johnson, E. S., Reed, S. I., and Yates, J. R. 3rd. (2004) Global analysis of protein sumoylation in Saccharomyces cerevisiae. J. Biol. Chem. 279, 45662–45668.PubMedCrossRefGoogle Scholar
  59. 59.
    Zhou, W., Ryan, J. J., and Zhou, H. (2004) Global analyses of sumoylated proteins in Saccharomyces cerevisiae. Induction of protein sumoylation by cellular stresses. J. Biol. Chem. 279, 32262–32268.PubMedCrossRefGoogle Scholar
  60. 60.
    Takahashi, Y., Yong-Gonzalez, V., Kikuchi, Y., and Strunnikov, A. (2006) SIZ1/SIZ2 control of chromosome transmission fidelity is mediated by the sumoylation of topoi-somerase II. Genetics 172, 783–794.PubMedCrossRefGoogle Scholar
  61. 61.
    Bachant, J., Alcasabas, A., Blat, Y., Kleckner, N., and Elledge, S. J. (2002) The SUMO-1 isopeptidase Smt4 is linked to centromeric cohesion through SUMO-1 modification of DNA topoisomerase II. Mol. Cell 9, 1169–1182.PubMedCrossRefGoogle Scholar
  62. 62.
    Azuma, Y., Arnaoutov, A., and Dasso, M. (2003) SUMO-2/3 regulates topoisomerase II in mitosis. J. Cell Biol. 163, 477–487.PubMedCrossRefGoogle Scholar
  63. 63.
    Liu, L. F., Desai, S. D., Li, T. K., Mao, Y., Sun, M., and Sim, S. P. (2000) Mechanism of action of camptothecin. Ann. N. Y. Acad. Sci. 922, 1–10.PubMedCrossRefGoogle Scholar
  64. 64.
    Torres-Rosell, J., Sunjevaric, I., De Piccoli, G., Sacher, M., Eckert-Boulet, N., Reid, R., Jentsch, S., Rothstein, R., Aragon, L., and Lisby, M. (2007) The Smc5-Smc6 complex and SUMO modification of Rad52 regulates recombinational repair at the ribosomal gene locus. Nat. Cell Biol. 9, 923–931.PubMedCrossRefGoogle Scholar
  65. 65.
    Papouli, E., Chen, S., Davies, A. A., Huttner, D., Krejci, L., Sung, P., and Ulrich, H. D. (2005) Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. Mol. Cell 19, 123–133.PubMedCrossRefGoogle Scholar
  66. 66.
    Pfander, B., Moldovan, G. L., Sacher, M., Hoege, C., and Jentsch, S. (2005) SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature 436, 428–433.PubMedGoogle Scholar
  67. 67.
    Hannich, J. T., Lewis, A., Kroetz, M. B., Li, S. J., Heide, H., Emili, A., and Hochstrasser, M. (2005) Defining the SUMO-modified proteome by multiple approaches in Saccharomyces cerevisiae. J. Biol. Chem. 280, 4102–4110.PubMedCrossRefGoogle Scholar
  68. 68.
    Prudden, J., Pebernard, S., Raffa, G., Slavin, D. A., Perry, J. J., Tainer, J. A., McGowan, C. H., and Boddy, M. N. (2007) SUMO targeted ubiquitin ligases in genome stability. EMBO J. 26, 4089–4101.PubMedCrossRefGoogle Scholar
  69. 69.
    Sun, H., Leverson, J. D., and Hunter, T. (2007) Conserved function of RNF4 family proteins in eukaryotes: targeting a ubiquitin ligase to SUMOylated proteins. EMBO J. 26, 4102–4112.PubMedCrossRefGoogle Scholar
  70. 70.
    Uzunova, K., Gottsche, K., Miteva, M., Weisshaar, S. R., Glanemann, C., Schnell-hardt, M., Niessen, M., Scheel, H., Hofmann, K., Johnson, E. S. et al. (2007) Ubiquitin-dependent proteolytic control of SUMO conjugates. J. Biol. Chem. 282, 34167–34175.PubMedCrossRefGoogle Scholar
  71. 71.
    Xie, Y., Kerscher, O., Kroetz, M. B., McCo-nchie, H. F., Sung, P., and Hochstrasser, M. (2007) The yeast HEX3-SLX8 heterodimer is a ubiquitin ligase stimulated by substrate sumoylation. J. Biol. Chem. 282, 34176–34184.PubMedCrossRefGoogle Scholar
  72. 72.
    Desterro, J. M., Rodriguez, M. S., and Hay, R. T. (1998) SUMO-1 modification of IκBα inhibits NF-κB activation. Mol. Cell 2, 233–239.PubMedCrossRefGoogle Scholar
  73. 73.
    Bossis, G. and Melchior, F. (2006) SUMO: regulating the regulator. Cell Div. 1, 13.PubMedCrossRefGoogle Scholar
  74. 74.
    Guo, B., Yang, S. H., Witty, J., and Shar-rocks, A. D. (2007) Signalling pathways and the regulation of SUMO modification. Bio-chem. Soc. Trans. 35, 1414–1418.CrossRefGoogle Scholar
  75. 75.
    Roscic, A., Moller, A., Calzado, M. A., Ren-ner, F., Wimmer, V. C., Gresko, E., Ludi, K. S., and Schmitz, M. L. (2006) Phospho-rylation-dependent control of Pc2 SUMO E3 ligase activity by its substrate protein HIPK2. Mol. Cell 24, 77–89.PubMedCrossRefGoogle Scholar
  76. 76.
    Boggio, R., Colombo, R., Hay, R. T., Dra-etta, G. F., and Chiocca, S. (2004) A mechanism for inhibiting the SUMO pathway. Mol. Cell 16, 549–561.PubMedCrossRefGoogle Scholar
  77. 77.
    Bossis, G. and Melchior, F. (2006) Regulation of SUMOylation by reversible oxidation of SUMO conjugating enzymes. Mol. Cell 21, 349–357.PubMedCrossRefGoogle Scholar
  78. 78.
    Kurepa, J., Walker, J. M., Smalle, J., Gosink, M. M., Davis, S. J., Durham, T. L., Sung, D. Y., and Vierstra, R. D. (2003) The small ubiqui-tin-like modifier (SUMO) protein modification system in Arabidopsis. Accumulation of SUMO1 and -2 conjugates is increased by stress. J. Biol. Chem. 278, 6862–6872.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Helle D. Ulrich
    • 1
  1. 1.Cancer Research UK London Research InstituteClare Hall LaboratoriesUK

Personalised recommendations