Skip to main content

The Methodology of Neuroproteomics

  • Protocol
  • First Online:
Neuroproteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 566))

Summary

The human central nervous system (CNS) is the most complex organ in nature, composed of ten trillion cells forming complex neural networks using a quadrillion synaptic connections. Proteins, their modifications, and their interactions are integral to CNS function. The emerging field of neuroproteomics provides us with a wide-scope view of posttranslation protein dynamics within the CNS to better our understanding of its function, and more often, its dysfunction consequent to neurodegenerative disorders. This chapter reviews methodology employed in the neurosciences to study the neuroproteome in health and disease. The chapter layout parallels this volume’s four parts. Part I focuses on modeling human neuropathology in animals as surrogate, accessible, and controllable platforms in our research. Part II discusses methodology used to focus analysis onto a subneuroproteome. Part III reviews analytical and bioinformatic technologies applied in neuroproteomics. Part IV discusses clinical neuroproteomics, from processing of human biofluids to translation in biomarkers research. Neuroproteomics continues to mature as a discipline, confronting the extreme complexity of the CNS proteome and its dynamics, and providing insight into the molecular mechanisms underlying how our nervous system works and how it is compromised by injury and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kim, S. I., Voshol, H., van Oostrum, J., Hastings, T. G., Cascio, M., and Glucksman, M. J. (2004) Neuroproteomics: Expression profiling of the brain’s proteomes in health and disease. Neurochem. Res. 29, 1317–1331.

    CAS  PubMed  Google Scholar 

  2. Butcher, J. (2007) Neuroproteomics comes of age. Lancet Neurol. 6, 850–851.

    PubMed  Google Scholar 

  3. Wasinger, V. C., Cordwell, S. J., Cerpa-Poljak, A., Yan, J. X., Gooley, A. A., Wilkins, M. R., Duncan, M. W., Harris, R., Williams, K. L., and Humphery-Smith, I. (1995) Progress with gene-product mapping of the mollicutes: Mycoplasma genitalium. Electrophoresis 16, 1090–1094.

    CAS  PubMed  Google Scholar 

  4. Pocklington, A. J., Armstrong, J. D., and Grant, S. G. (2006) Organization of brain complexity – synapse proteome form and function. Brief Funct. Genomic Proteomic. 5, 66–73.

    CAS  PubMed  Google Scholar 

  5. Temburni, M. K., and Jacob, M. H. (2001) New functions for glia in the brain. Proc. Natl Acad. Sci. USA 98, 3631–3632.

    CAS  PubMed  Google Scholar 

  6. Masland, R. H. (2004) Neuronal cell types. Curr. Biol. 14, R497–R500.

    CAS  PubMed  Google Scholar 

  7. Becker, M., Schindler, J., and Nothwang, H. G. (2006) Neuroproteomics – the tasks lying ahead. Electrophoresis 27, 2819–2829.

    CAS  PubMed  Google Scholar 

  8. Ekegren, T., Hanrieder, J., and Bergquist, J. (2008) Clinical perspectives of high-resolution mass spectrometry-based proteomics in neuroscience: Exemplified in amyotrophic lateral sclerosis biomarker discovery research. J. Mass Spectrom. 43, 559–571.

    CAS  PubMed  Google Scholar 

  9. Gustincich, S., Sandelin, A., Plessy, C., Katayama, S., Simone, R., Lazarevic, D., Hayashizaki, Y., and Carninci, P. (2006) The complexity of the mammalian transcriptome. J. Physiol. 575, 321–332.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Wang, E. T., Sandberg, R., Luo, S., Khrebtukova, I., Zhang, L., Mayr, C., Kingsmore, S. F., Schroth, G. P., and Burge, C. B. (2008) Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470–476.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Jensen, O. N. (2006) Interpreting the protein language using proteomics. Nat. Rev. Mol. Cell Biol. 7, 391–403.

    CAS  PubMed  Google Scholar 

  12. Kalume, D. E., Molina, H., and Pandey, A. (2003) Tackling the phosphoproteome: Tools and strategies. Curr. Opin. Chem. Biol. 7, 64–69.

    CAS  PubMed  Google Scholar 

  13. Paradela, A., and Albar, J. P. (2008) Advances in the analysis of protein phosphorylation. J. Proteome Res. 7, 1809–1818.

    CAS  PubMed  Google Scholar 

  14. Yang, X. J. (2005) Multisite Protein Modification and Intramolecular Signaling. Oncogene 24, 1653–1662.

    CAS  PubMed  Google Scholar 

  15. Dube, D. H., and Bertozzi, C. R. (2005) Glycans in cancer and inflammation – potential for therapeutics and diagnostics. Nat. Rev. Drug Discov. 4, 477–488.

    CAS  PubMed  Google Scholar 

  16. Carpentier, S. C., Panis, B., Swennen, R., and Lammertyn, J. (2008) Finding the significant markers: Statistical analysis of proteomic data. Methods Mol. Biol. 428, 327–347.

    CAS  PubMed  Google Scholar 

  17. Isserlin, R., and Emili, A. (2008) Interpretation of large-scale quantitative shotgun proteomic profiles for biomarker discovery. Curr. Opin. Mol. Ther. 10, 231–242.

    CAS  PubMed  Google Scholar 

  18. Taylor, C. F., Paton, N. W., Lilley, K. S., Binz, P. A., Julian, R. K. Jr., Jones, A. R., Zhu, W., Apweiler, R., Aebersold, R., Deutsch, E. W., Dunn, M. J., Heck, A. J., Leitner, A., Macht, M., Mann, M., Martens, L., Neubert, T. A., Patterson, S. D., Ping, P., Seymour, S. L., Souda, P., Tsugita, A., Vandekerckhove, J., Vondriska, T. M., Whitelegge, J. P., Wilkins, M. R., Xenarios, I., Yates, J. R. 3rd, and Hermjakob, H. (2007) The minimum information about a proteomics experiment (MIAPE). Nat. Biotechnol. 25, 887–893.

    CAS  PubMed  Google Scholar 

  19. Eisenacher, M., Hardt, T., Martens, L., Hakkinen, J., Apweiler, R., Hamacher, M., Meyer, H. E., and Stephan, C. (2008) Proteomics data collection – 3rd ProDaC Workshop April 22nd 2008, Toledo, Spain. Proteomics 8, 4163–4167.

    CAS  PubMed  Google Scholar 

  20. Lu, Q., Murugesan, N., Macdonald, J. A., Wu, S. L., Pachter, J. S., and Hancock, W. S. (2008) Analysis of mouse brain microvascular endothelium using immuno-laser capture microdissection coupled to a hybrid linear ion trap with fourier transform-mass spectrometry proteomics platform. Electrophoresis 29, 2689–2695.

    CAS  PubMed  Google Scholar 

  21. Mustafa, D., Kros, J. M., and Luider, T. (2008) Combining laser capture microdissection and proteomics techniques. Methods Mol. Biol. 428, 159–178.

    CAS  PubMed  Google Scholar 

  22. Ferrer, I., Santpere, G., Arzberger, T., Bell, J., Blanco, R., Boluda, S., Budka, H., Carmona, M., Giaccone, G., Krebs, B., Limido, L., Parchi, P., Puig, B., Strammiello, R., Strobel, T., and Kretzschmar, H. (2007) Brain protein preservation largely depends on the postmortem storage temperature: Implications for study of proteins in human neurologic diseases and management of brain banks: A brainnet europe study. J. Neuropathol. Exp. Neurol. 66, 35–46.

    CAS  PubMed  Google Scholar 

  23. Van Elzen, R., Moens, L., and Dewilde, S. (2008) Expression profiling of the cerebral ischemic and hypoxic response. Expert Rev. Proteomics 5, 263–282.

    CAS  PubMed  Google Scholar 

  24. Lipton, P. (1999) Ischemic cell death in brain neurons. Physiol. Rev. 79, 1431–1568.

    CAS  PubMed  Google Scholar 

  25. Stanimirovic, D., and Satoh, K. (2000) Inflammatory mediators of cerebral endothelium: A role in ischemic brain inflammation. Brain Pathol. 10, 113–126.

    CAS  PubMed  Google Scholar 

  26. Won, S. J., Kim, D. Y., and Gwag, B. J. (2002) Cellular and molecular pathways of ischemic neuronal death. J. Biochem. Mol. Biol. 35, 67–86.

    CAS  PubMed  Google Scholar 

  27. Danton, G. H., and Dietrich, W. D. (2003) Inflammatory mechanisms after ischemia and stroke. J. Neuropathol. Exp. Neurol. 62, 127–136.

    CAS  PubMed  Google Scholar 

  28. Aurell, A., Rosengren, L. E., Karlsson, B., Olsson, J. E., Zbornikova, V., and Haglid, K. G. (1991) Determination of S-100 and glial fibrillary acidic protein concentrations in cerebrospinal fluid after brain infarction. Stroke 22, 1254–1258.

    CAS  PubMed  Google Scholar 

  29. Sotgiu, S., Zanda, B., Marchetti, B., Fois, M. L., Arru, G., Pes, G. M., Salaris, F. S., Arru, A., Pirisi, A., and Rosati, G. (2006) Inflammatory biomarkers in blood of patients with acute brain ischemia. Eur. J. Neurol. 13, 505–513.

    CAS  PubMed  Google Scholar 

  30. Longa, E. Z., Weinstein, P. R., Carlson, S., and Cummins, R. (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20, 84–91.

    CAS  PubMed  Google Scholar 

  31. Bao, W. L., Williams, A. J., Faden, A. I., and Tortella, F. C. (2001) Selective mGluR5 receptor antagonist or agonist provides neuroprotection in a rat model of focal cerebral ischemia. Brain Res. 922, 173–179.

    CAS  PubMed  Google Scholar 

  32. Berti, R., Williams, A. J., Velarde, L. C., Moffett, J. R., Elliott, P. J., Adams, J., Yao, C., Dave, J. R., and Tortella, F. C. (2003) Effect of the proteasome inhibitor MLN519 on the expression of inflammatory molecules following middle cerebral artery occlusion and reperfusion in the rat. Neurotox. Res. 5, 505–514.

    CAS  PubMed  Google Scholar 

  33. Phillips, J. B., Williams, A. J., Adams, J., Elliott, P. J., and Tortella, F. C. (2000) Proteasome inhibitor PS519 reduces infarction and attenuates leukocyte infiltration in a rat model of focal cerebral ischemia. Stroke 31, 1686–1693.

    CAS  PubMed  Google Scholar 

  34. Williams, A. J., Dave, J. R., Phillips, J. B., Lin, Y., McCabe, R. T., and Tortella, F. C. (2000) Neuroprotective efficacy and therapeutic window of the high-affinity N-methyl-d-aspartate antagonist conantokin-G: In vitro (primary cerebellar neurons) and in vivo (rat model of transient focal brain ischemia) studies. J. Pharmacol. Exp. Ther. 294, 378–386.

    CAS  PubMed  Google Scholar 

  35. Williams, A. J., Hale, S. L., Moffett, J. R., Dave, J. R., Elliott, P. J., Adams, J., and Tortella, F. C. (2003) Delayed treatment with MLN519 reduces infarction and associated neurologic deficit caused by focal ischemic brain injury in rats via antiinflammatory mechanisms involving nuclear factor-kappaB activation, gliosis, and leukocyte infiltration. J. Cereb. Blood Flow Metab. 23, 75–87.

    CAS  PubMed  Google Scholar 

  36. Williams, A. J., Ling, G., Berti, R., Moffett, J. R., Yao, C., Lu, X. M., Dave, J. R., and Tortella, F. C. (2003) Treatment with the snail peptide CGX-1007 reduces DNA damage and alters gene expression of c-Fos and Bcl-2 following focal ischemic brain injury in rats. Exp. Brain Res. 153, 16–26.

    CAS  PubMed  Google Scholar 

  37. Williams, A. J., Ling, G., McCabe, R. T., and Tortella, F. C. (2002) Intrathecal CGX-1007 is neuroprotective in a rat model of focal cerebral ischemia. Neuroreport 13, 821–824.

    CAS  PubMed  Google Scholar 

  38. Williams, A. J., and Tortella, F. C. (2002) Neuroprotective effects of the sodium channel blocker RS100642 and attenuation of ischemia-induced brain seizures in the rat. Brain Res. 932, 45–55.

    CAS  PubMed  Google Scholar 

  39. Yao, C., Williams, A. J., Lu, X. C., Price, R. A., Cunningham, B. S., Berti, R., Tortella, F. C., and Dave, J. R. (2003) The sodium channel blocker RS100642 reverses down-regulation of the sodium channel alpha-subunit Na(v) 1.1 expression caused by transient ischemic brain injury in rats. Neurotox. Res. 5, 245–253.

    CAS  PubMed  Google Scholar 

  40. Cernak, I. (2005) Animal models of head trauma. NeuroRx 2, 410–422.

    PubMed Central  PubMed  Google Scholar 

  41. Onifer, S. M., Rabchevsky, A. G., and Scheff, S. W. (2007) Rat models of traumatic spinal cord injury to assess motor recovery. ILAR J. 48, 385–395.

    CAS  PubMed  Google Scholar 

  42. Pearse, D. D., and Bunge, M. B. (2006) Designing cell- and gene-based regeneration strategies to repair the injured spinal cord. J. Neurotrauma 23, 438–452.

    CAS  PubMed  Google Scholar 

  43. Ravikumar, R., McEwen, M. L., and Springer, J. E. (2007) Post-treatment with the cyclosporin derivative, NIM811, reduced indices of cell death and increased the volume of spared tissue in the acute period following spinal cord contusion. J. Neurotrauma 24, 1618–1630.

    PubMed  Google Scholar 

  44. Reilly, P. L. (2001) Brain injury: The pathophysiology of the first hours. ‘Talk and Die revisited’. J. Clin. Neurosci. 8, 398–403.

    CAS  PubMed  Google Scholar 

  45. Stiefel, M. F., Tomita, Y., and Marmarou, A. (2005) Secondary ischemia impairing the restoration of ion homeostasis following traumatic brain injury. J. Neurosurg. 103, 707–714.

    PubMed  Google Scholar 

  46. Prieto, D. A., Ye, X., and Veenstra, T. D. (2008) Proteomic analysis of traumatic brain injury: The search for biomarkers. Expert Rev. Proteomics 5, 283–291.

    CAS  PubMed  Google Scholar 

  47. Ottens, A. K., Kobeissy, F. H., Fuller, B. F., Liu, M. C., Oli, M. W., Hayes, R. L., and Wang, K. K. (2007) Novel neuroproteomic approaches to studying traumatic brain injury. Prog. Brain Res. 161, 401–418.

    CAS  PubMed  Google Scholar 

  48. Ottens, A. K., Kobeissy, F. H., Golden, E. C., Zhang, Z., Haskins, W. E., Chen, S. S., Hayes, R. L., Wang, K. K., and Denslow, N. D. (2006) Neuroproteomics in neurotrauma. Mass Spectrom. Rev. 25, 380–408.

    CAS  PubMed  Google Scholar 

  49. Matsumoto, I., Alexander-Kaufman, K., Iwazaki, T., Kashem, M. A., and Matsuda-Matsumoto, H. (2007) CNS proteomes in alcohol and drug abuse and dependence. Expert Rev. Proteomics 4, 539–552.

    CAS  PubMed  Google Scholar 

  50. Kobeissy, F. H., Sadasivan, S., Liu, J., Gold, M. S., and Wang, K. K. (2008) Psychiatric research: Psychoproteomics, degradomics and systems biology. Expert Rev. Proteomics 5, 293–314.

    CAS  PubMed  Google Scholar 

  51. Matsumoto, H., and Matsumoto, I. (2008) Alcoholism: Protein expression profiles in a human hippocampal model. Expert Rev. Proteomics 5, 321–331.

    CAS  PubMed  Google Scholar 

  52. Hemby, S. E. (2006) Assessment of genome and proteome profiles in cocaine abuse. Prog. Brain Res. 158, 173–195.

    CAS  PubMed  Google Scholar 

  53. Bodzon-Kulakowska, A., Bierczynska-Krzysik, A., Drabik, A., Noga, M., Kraj, A., Suder, P., and Silberring, J. (2005) Morphinome–Proteome of the Nervous System After Morphine Treatment. Amino Acids 28, 13–19.

    CAS  PubMed  Google Scholar 

  54. Iwazaki, T., McGregor, I. S., and Matsumoto, I. (2008) Protein expression profile in the amygdala of rats with methamphetamine-induced behavioral sensitization. Neurosci. Lett. 435, 113–119.

    CAS  PubMed  Google Scholar 

  55. Iwazaki, T., McGregor, I. S., and Matsumoto, I. (2007) Protein expression profile in the striatum of rats with methamphetamine-induced behavioral sensitization. Proteomics 7, 1131–1139.

    CAS  PubMed  Google Scholar 

  56. Kobeissy, F. H., Warren, M. W., Ottens, A. K., Sadasivan, S., Zhang, Z., Gold, M. S., and Wang, K. K. (2008) Psychoproteomic analysis of rat cortex following acute methamphetamine exposure. J. Proteome Res. 7, 1971–1983.

    CAS  PubMed  Google Scholar 

  57. Freeman, W. M., Brebner, K., Amara, S. G., Reed, M. S., Pohl, J., and Phillips, A. G. (2005) Distinct proteomic profiles of amphetamine self-administration transitional states. Pharmacogenomics J. 5, 203–214.

    CAS  PubMed  Google Scholar 

  58. Hwang, Y. Y., and Li, M. D. (2006) Proteins differentially expressed in response to nicotine in five rat brain regions: Identification using a 2-DE/MS-based proteomics approach. Proteomics 6, 3138–3153.

    CAS  PubMed  Google Scholar 

  59. Yeom, M., Shim, I., Lee, H. J., and Hahm, D. H. (2005) Proteomic analysis of nicotine-associated protein expression in the striatum of repeated nicotine-treated rats. Biochem. Biophys. Res. Commun. 326, 321–328.

    CAS  PubMed  Google Scholar 

  60. Thompson, P. M., Hayashi, K. M., Simon, S. L., Geaga, J. A., Hong, M. S., Sui, Y., Lee, J. Y., Toga, A. W., Ling, W., and London, E. D. (2004) Structural abnormalities in the brains of human subjects who use methamphetamine. J. Neurosci. 24, 6028–6036.

    CAS  PubMed  Google Scholar 

  61. Pierce, R. C., and Kumaresan, V. (2006) The mesolimbic dopamine system: The final common pathway for the reinforcing effect of drugs of abuse? Neurosci. Biobehav. Rev. 30, 215–238.

    CAS  PubMed  Google Scholar 

  62. Gotz, J., Deters, N., Doldissen, A., Bokhari, L., Ke, Y., Wiesner, A., Schonrock, N., and Ittner, L. M. (2007) A decade of tau transgenic animal models and beyond. Brain Pathol. 17, 91–103.

    CAS  PubMed  Google Scholar 

  63. Games, D., Adams, D., Alessandrini, R., Barbour, R., Berthelette, P., Blackwell, C., Carr, T., Clemens, J., Donaldson, T., and Gillespie, F. (1995) Alzheimer-type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein. Nature 373, 523–527.

    CAS  PubMed  Google Scholar 

  64. Hsiao, K., Chapman, P., Nilsen, S., Eckman, C., Harigaya, Y., Younkin, S., Yang, F., and Cole, G. (1996) Correlative memory deficits, abeta elevation, and amyloid plaques in transgenic mice. Science 274, 99–102.

    CAS  PubMed  Google Scholar 

  65. Sturchler-Pierrat, C., Abramowski, D., Duke, M., Wiederhold, K. H., Mistl, C., Rothacher, S., Ledermann, B., Burki, K., Frey, P., Paganetti, P. A., Waridel, C., Calhoun, M. E., Jucker, M., Probst, A., Staufenbiel, M., and Sommer, B. (1997) Two amyloid precursor protein transgenic mouse models with alzheimer disease-like pathology. Proc. Natl Acad. Sci. USA 94, 13287–13292.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Stalder, M., Phinney, A., Probst, A., Sommer, B., Staufenbiel, M., and Jucker, M. (1999) Association of microglia with amyloid plaques in brains of APP23 transgenic mice. Am. J. Pathol. 154, 1673–1684.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Lewis, J., McGowan, E., Rockwood, J., Melrose, H., Nacharaju, P., Van Slegtenhorst, M., Gwinn-Hardy, K., Paul Murphy, M., Baker, M., Yu, X., Duff, K., Hardy, J., Corral, A., Lin, W. L., Yen, S. H., Dickson, D. W., Davies, P., and Hutton, M. (2000) Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein. Nat. Genet.25 402–405.

    CAS  PubMed  Google Scholar 

  68. Lewis, J., Dickson, D. W., Lin, W. L., Chisholm, L., Corral, A., Jones, G., Yen, S. H., Sahara, N., Skipper, L., Yager, D., Eckman, C., Hardy, J., Hutton, M., and McGowan, E. (2001) Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science 293, 1487–1491.

    CAS  PubMed  Google Scholar 

  69. Gotz, J., Chen, F., van Dorpe, J., and Nitsch, R. M. (2001) Formation of neurofibrillary tangles in P301l tau transgenic mice induced by abeta 42 fibrils. Science 293, 1491–1495.

    CAS  PubMed  Google Scholar 

  70. Gotz, J., Streffer, J. R., David, D., Schild, A., Hoerndli, F., Pennanen, L., Kurosinski, P., and Chen, F. (2004) Transgenic animal models of Alzheimer’s disease and related disorders: Histopathology, behavior and therapy. Mol. Psychiatry 9, 664–683.

    CAS  PubMed  Google Scholar 

  71. Abdul, H. M., Sultana, R., St. Clair, D. K., Markesbery, W. R., and Butterfield, D. A. (2008) Oxidative damage in brain from human mutant APP/PS-1 double knock-in mice as a function of age. Free Radic. Biol. Med. 45, 1420–1425.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Owen, J. B., Opii, W. O., Ramassamy, C., Pierce, W. M., and Butterfield, D. A. (2008) Proteomic analysis of brain protein expression levels in NF-Kappabeta p50 (−/−) homozygous knockout mice. Brain Res. 1240, 22–30.

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Hartl, D., Rohe, M., Mao, L., Staufenbiel, M., Zabel, C., and Klose, J. (2008) Impairment of adolescent hippocampal plasticity in a mouse model for Alzheimer’s disease precedes disease phenotype. PLoS ONE 3, e2759.

    PubMed Central  PubMed  Google Scholar 

  74. Martin, B., Brenneman, R., Becker, K. G., Gucek, M., Cole, R. N., and Maudsley, S. (2008) ITRAQ analysis of complex proteome alterations in 3xTgAD Alzheimer’s mice: Understanding the interface between physiology and disease. PLoS ONE 3, e2750.

    PubMed Central  PubMed  Google Scholar 

  75. Vonsattel, J. P. (2008) Huntington disease models and human neuropathology: Similarities and differences. Acta Neuropathol.115, 55–69.

    PubMed Central  PubMed  Google Scholar 

  76. Perluigi, M., Poon, H. F., Maragos, W., Pierce, W. M., Klein, J. B., Calabrese, V., Cini, C., De Marco, C., and Butterfield, D. A. (2005) Proteomic analysis of protein expression and oxidative modification in r6/2 transgenic mice: A model of Huntington disease. Mol. Cell. Proteomics 4, 1849–1861.

    CAS  PubMed  Google Scholar 

  77. Chiang, M. C., Juo, C. G., Chang, H. H., Chen, H. M., Yi, E. C., and Chern, Y. (2007) Systematic uncovering of multiple pathways underlying the pathology of Huntington disease by an acid-cleavable isotope-coded affinity tag approach. Mol. Cell. Proteomics 6, 781–797.

    CAS  PubMed  Google Scholar 

  78. Fasano, M., and Lopiano, L. (2008) Alpha-synuclein and Parkinson’s disease: A proteomic view. Expert Rev. Proteomics 5, 239–248.

    CAS  PubMed  Google Scholar 

  79. Betarbet, R., Canet-Aviles, R. M., Sherer, T. B., Mastroberardino, P. G., McLendon, C., Kim, J. H., Lund, S., Na, H. M., Taylor, G., Bence, N. F., Kopito, R., Seo, B. B., Yagi, T., Yagi, A., Klinefelter, G., Cookson, M. R., and Greenamyre, J. T. (2006) Intersecting pathways to neurodegeneration in Parkinson’s disease: Effects of the pesticide rotenone on DJ-1, alpha-synuclein, and the ubiquitin–proteasome system.Neurobiol. Dis.22, 404–420.

    CAS  PubMed  Google Scholar 

  80. Betarbet, R., Sherer, T. B., and Greenamyre, J. T. (2005) Ubiquitin-proteasome system and Parkinson’s diseases. Exp. Neurol.191, S17–S27.

    CAS  PubMed  Google Scholar 

  81. Ichibangase, T., Saimaru, H., Takamura, N., Kuwahara, T., Koyama, A., Iwatsubo, T., and Imai, K. (2008) Proteomics of caenorhabditis elegans over-expressing human alpha-synuclein analyzed by fluorogenic derivatization-liquid chromatography/tandem mass spectrometry: Identification of actin and several ribosomal proteins as negative markers at early Parkinson’s disease stages. Biomed. Chromatogr. 22, 232–234.

    CAS  PubMed  Google Scholar 

  82. Zabel, C., Andreew, A., Mao, L., and Hartl, D. (2008) Protein expression overlap: More important than which proteins change in expression? Expert Rev. Proteomics 5, 187–205.

    CAS  PubMed  Google Scholar 

  83. Tribl, F., Meyer, H. E., and Marcus, K. (2008) Analysis of organelles within the nervous system: Impact on brain and organelle functions. Expert Rev. Proteomics 5, 333–351.

    CAS  PubMed  Google Scholar 

  84. Fasano, M., Giraudo, S., Coha, S., Bergamasco, B., and Lopiano, L. (2003) Residual substantia nigra neuromelanin in Parkinson’s disease is cross-linked to alpha-synuclein.Neurochem. Int. 42, 603–606.

    CAS  PubMed  Google Scholar 

  85. Halliday, G. M., Ophof, A., Broe, M., Jensen, P. H., Kettle, E., Fedorow, H., Cartwright, M. I., Griffiths, F. M., Shepherd, C. E., and Double, K. L. (2005) Alpha-synuclein redistributes to neuromelanin lipid in the substantia nigra early in Parkinson’s disease. Brain 128, 2654–2664.

    PubMed  Google Scholar 

  86. Stevens, S. M. Jr., Duncan, R. S., Koulen, P., and Prokai, L. (2008) Proteomic analysis of mouse brain microsomes: Identification and bioinformatic characterization of endoplasmic reticulum proteins in the mammalian central nervous system. J. Proteome Res. 7, 1046–1054.

    CAS  PubMed  Google Scholar 

  87. Grant, K. J., and Wu, C. C. (2007) Advances in neuromembrane proteomics: Efforts towards a comprehensive analysis of membrane proteins in the brain. Brief Funct. Genomic Proteomic. 6, 59–69.

    CAS  PubMed  Google Scholar 

  88. Macher, B. A., and Yen, T. Y. (2007) Proteins at membrane surfaces – a review of approaches. Mol. Biosyst. 3, 705–713.

    CAS  PubMed  Google Scholar 

  89. Emes, R. D., Pocklington, A. J., Anderson, C. N., Bayes, A., Collins, M. O., Vickers, C. A., Croning, M. D., Malik, B. R., Choudhary, J. S., Armstrong, J. D., and Grant, S. G. (2008) Evolutionary expansion and anatomical specialization of synapse proteome complexity. Nat. Neurosci. 11, 799–806.

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Li, K. W., and Jimenez, C. R. (2008) Synapse proteomics: Current status and quantitative applications. Expert Rev. Proteomics 5, 353–360.

    CAS  PubMed  Google Scholar 

  91. Bai, F., and Witzmann, F. A. (2007) Synaptosome proteomics. Subcell. Biochem. 43, 77–98.

    PubMed Central  PubMed  Google Scholar 

  92. Cheng, D., Hoogenraad, C. C., Rush, J., Ramm, E., Schlager, M. A., Duong, D. M., Xu, P., Wijayawardana, S. R., Hanfelt, J., Nakagawa, T., Sheng, M., and Peng, J. (2006) Relative and absolute quantification of postsynaptic density proteome isolated from rat forebrain and cerebellum. Mol. Cell. Proteomics 5, 1158–1170.

    CAS  PubMed  Google Scholar 

  93. Liu, S. H., Cheng, H. H., Huang, S. Y., Yiu, P. C., and Chang, Y. C. (2006) Studying the protein organization of the postsynaptic density by a novel solid phase- and chemical cross-linking-based technology. Mol. Cell. Proteomics 5, 1019–1032.

    CAS  PubMed  Google Scholar 

  94. Burre, J., Beckhaus, T., Schagger, H., Corvey, C., Hofmann, S., Karas, M., Zimmermann, H., and Volknandt, W. (2006) Analysis of the synaptic vesicle proteome using three gel-based protein separation techniques. Proteomics 6, 6250–6262.

    CAS  PubMed  Google Scholar 

  95. Burre, J., Zimmermann, H., and Volknandt, W. (2007) Immunoisolation and subfractionation of synaptic vesicle proteins. Anal. Biochem. 362, 172–181.

    CAS  PubMed  Google Scholar 

  96. Morciano, M., Burre, J., Corvey, C., Karas, M., Zimmermann, H., and Volknandt, W. (2005) Immunoisolation of two synaptic vesicle pools from synaptosomes: A proteomics analysis. J. Neurochem. 95, 1732–1745.

    CAS  PubMed  Google Scholar 

  97. Dosemeci, A., Tao-Cheng, J. H., Vinade, L., and Jaffe, H. (2006) Preparation of postsynaptic density fraction from hippocampal slices and proteomic analysis. Biochem. Biophys. Res. Commun. 339, 687–694.

    CAS  PubMed  Google Scholar 

  98. Trinidad, J. C., Specht, C. G., Thalhammer, A., Schoepfer, R., and Burlingame, A. L. (2006) Comprehensive identification of phosphorylation sites in postsynaptic density preparations. Mol. Cell. Proteomics 5, 914–922.

    CAS  PubMed  Google Scholar 

  99. Trinidad, J. C., Thalhammer, A., Specht, C. G., Lynn, A. J., Baker, P. R., Schoepfer, R., and Burlingame, A. L. (2008) Quantitative analysis of synaptic phosphorylation and protein expression. Mol. Cell. Proteomics 7, 684–696.

    CAS  PubMed  Google Scholar 

  100. Vosseller, K., Trinidad, J. C., Chalkley, R. J., Specht, C. G., Thalhammer, A., Lynn, A. J., Snedecor, J. O., Guan, S., Medzihradszky, K. F., Maltby, D. A., Schoepfer, R., and Burlingame, A. L. (2006) O-linked N-acetylglucosamine proteomics of postsynaptic density preparations using lectin weak affinity chromatography and mass spectrometry. Mol. Cell. Proteomics 5, 923–934.

    CAS  PubMed  Google Scholar 

  101. Augustinack, J. C., Schneider, A., Mandelkow, E. M., and Hyman, B. T. (2002) Specific tau phosphorylation sites correlate with severity of neuronal cytopathology in Alzheimer’s disease. Acta Neuropathol. 103, 26–35.

    CAS  PubMed  Google Scholar 

  102. Hampel, H., Burger, K., Pruessner, J. C., Zinkowski, R., DeBernardis, J., Kerkman, D., Leinsinger, G., Evans, A. C., Davies, P., Moller, H. J., and Teipel, S. J. (2005) Correlation of cerebrospinal fluid levels of tau protein phosphorylated at threonine 231 with rates of hippocampal atrophy in Alzheimer disease. Arch. Neurol. 62, 770–773.

    PubMed  Google Scholar 

  103. Cripps, D., Thomas, S. N., Jeng, Y., Yang, F., Davies, P., and Yang, A. J. (2006) Alzheimer disease-specific conformation of hyperphosphorylated paired helical filament-tau is polyubiquitinated through Lys-48, Lys-11, and Lys-6 ubiquitin conjugation. J. Biol. Chem. 281, 10825–10838.

    CAS  PubMed  Google Scholar 

  104. Butterfield, D. A., Reed, T., Newman, S. F., and Sultana, R. (2007) Roles of amyloid beta-peptide-associated oxidative stress and brain protein modifications in the pathogenesis of Alzheimer’s disease and mild cognitive impairment. Free Radic. Biol. Med. 43, 658–677.

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Zhan, X., and Desiderio, D. M. (2004) The human pituitary nitroproteome: Detection of nitrotyrosyl-proteins with two-dimensional western blotting, and amino acid sequence determination with mass spectrometry. Biochem. Biophys. Res. Commun. 325, 1180–1186.

    CAS  PubMed  Google Scholar 

  106. Zhan, X., and Desiderio, D. M. (2006) Nitroproteins from a human pituitary adenoma tissue discovered with a nitrotyrosine affinity column and tandem mass spectrometry. Anal. Biochem. 354, 279–289.

    CAS  PubMed  Google Scholar 

  107. Azarkan, M., Huet, J., Baeyens-Volant, D., Looze, Y., and Vandenbussche, G. (2007) Affinity chromatography: A useful tool in proteomics studies. J. Chromatogr. B. Analyt Technol. Biomed. Life. Sci. 849, 81–90.

    CAS  PubMed  Google Scholar 

  108. Karlsson, K., Cairns, N., Lubec, G., and Fountoulakis, M. (1999) Enrichment of human brain proteins by heparin chromatography. Electrophoresis 20, 2970–2976.

    CAS  PubMed  Google Scholar 

  109. Xiong, S., Zhang, L., and He, Q. Y. (2008) Fractionation of proteins by heparin chromatography. Methods Mol. Biol. 424, 213–221.

    CAS  PubMed  Google Scholar 

  110. Abu-Farha, M., Elisma, F., and Figeys, D. (2008) Identification of protein-protein interactions by mass spectrometry coupled techniques. Adv. Biochem. Eng. Biotechnol. 110, 67–80.

    CAS  PubMed  Google Scholar 

  111. Berggard, T., Linse, S., and James, P. (2007) Methods for the detection and analysis of protein-protein interactions. Proteomics 7, 2833–2842.

    PubMed  Google Scholar 

  112. Zhang, Z., Ottens, A. K., Golden, E. C., Hayes, R. L., and Wang, K. K. (2006) Using calmodulin-affinity capture to study the rat brain calmodulin binding proteome and its vulnerability to calpain and caspase proteolysis. Calcium Binding Proteins 1, 125–134.

    Google Scholar 

  113. Klose, J. (1975) Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik 26, 231–243.

    CAS  PubMed  Google Scholar 

  114. O’Farrell, P. H. (1975) High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250, 4007–4021.

    PubMed Central  PubMed  Google Scholar 

  115. Alban, A., David, S. O., Bjorkesten, L., Andersson, C., Sloge, E., Lewis, S., and Currie, I. (2003) A novel experimental design for comparative two-dimensional gel analysis: Two-dimensional difference gel electrophoresis incorporating a pooled internal standard. Proteomics 3, 36–44.

    CAS  PubMed  Google Scholar 

  116. Tannu, N. S., and Hemby, S. E. (2006) Methods for proteomics in neuroscience. Prog. Brain Res. 158, 41–82.

    CAS  PubMed  Google Scholar 

  117. Shin, J. H., Krapfenbauer, K., and Lubec, G. (2006) Large-scale identification of cytosolic mouse brain proteins by chromatographic prefractionation. Electrophoresis 27, 2799–2813.

    CAS  PubMed  Google Scholar 

  118. McDonald, W. H., and Yates, J. R. 3rd. (2002) Shotgun proteomics and biomarker discovery. Dis. Markers 18, 99–105.

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Wolters, D. A., Washburn, M. P., and Yates, J. R. 3rd. (2001) An automated multidimensional protein identification technology for shotgun proteomics. Anal. Chem. 73, 5683–5690.

    CAS  PubMed  Google Scholar 

  120. Nakamura, T., Kuromitsu, J., and Oda, Y. (2008) Evaluation of comprehensive multidimensional separations using reversed-phase, reversed-phase liquid chromatography/mass spectrometry for shotgun proteomics. J. Proteome Res. 7, 1007–1011.

    CAS  PubMed  Google Scholar 

  121. Gilar, M., Olivova, P., Daly, A. E., and Gebler, J. C. (2005) Two-dimensional separation of peptides using RP-RP-HPLC system with different pH in first and second separation dimensions. J. Sep. Sci. 28, 1694–1703.

    CAS  PubMed  Google Scholar 

  122. Righetti, P. G., Boschetti, E., Lomas, L., and Citterio, A. (2006) Protein equalizer technology: The quest for a “democratic proteome”. Proteomics 6, 3980–3992.

    CAS  PubMed  Google Scholar 

  123. Panchaud, A., Affolter, M., Moreillon, P., and Kussmann, M. (2008) Experimental and computational approaches to quantitative proteomics: Status quo and outlook. J. Proteomics 71, 19–33.

    CAS  PubMed  Google Scholar 

  124. Gygi, S. P., Rist, B., Gerber, S. A., Turecek, F., Gelb, M. H., and Aebersold, R. (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 17, 994–999.

    CAS  PubMed  Google Scholar 

  125. Han, D. K., Eng, J., Zhou, H., and Aebersold, R. (2001) Quantitative profiling of differentiation-induced microsomal proteins using isotope-coded affinity tags and mass spectrometry. Nat. Biotechnol. 19, 946–951.

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Ong, S. E., Blagoev, B., Kratchmarova, I., Kristensen, D. B., Steen, H., Pandey, A., and Mann, M. (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics 1, 376–386.

    CAS  PubMed  Google Scholar 

  127. Yao, X., Freas, A., Ramirez, J., Demirev, P. A., and Fenselau, C. (2001) Proteolytic 18O labeling for comparative proteomics: Model studies with two serotypes of adenovirus. Anal. Chem. 73, 2836–2842.

    CAS  PubMed  Google Scholar 

  128. Thompson, A., Schafer, J., Kuhn, K., Kienle, S., Schwarz, J., Schmidt, G., Neumann, T., Johnstone, R., Mohammed, A. K., and Hamon, C. (2003) Tandem mass tags: A novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal. Chem. 75, 1895–1904.

    CAS  PubMed  Google Scholar 

  129. Ross, P. L., Huang, Y. N., Marchese, J. N., Williamson, B., Parker, K., Hattan, S., Khainovski, N., Pillai, S., Dey, S., Daniels, S., Purkayastha, S., Juhasz, P., Martin, S., Bartlet-Jones, M., He, F., Jacobson, A., and Pappin, D. J. (2004) Multiplexed protein quantitation in saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteomics 3, 1154–1169.

    CAS  PubMed  Google Scholar 

  130. Zetterberg, H., Ruetschi, U., Portelius, E., Brinkmalm, G., Andreasson, U., Blennow, K., and Brinkmalm, A. (2008) Clinical proteomics in neurodegenerative disorders. Acta Neurol. Scand. 118, 1–11.

    CAS  PubMed  Google Scholar 

  131. Hsich, G., Kenney, K., Gibbs, C. J., Lee, K. H., and Harrington, M. G. (1996) The 14-3-3 brain protein in cerebrospinal fluid as a marker for transmissible spongiform encephalopathies. N. Engl. J. Med. 335, 924–930.

    CAS  PubMed  Google Scholar 

  132. Veenstra, T. D., and Marcus, K. (2008) Multidimensional advancement of neuroproteomics. Expert Rev. Proteomics 5, 149–151.

    PubMed  Google Scholar 

  133. Takamori, S., Holt, M., Stenius, K., Lemke, E. A., Gronborg, M., Riedel, D., Urlaub, H., Schenck, S., Brugger, B., Ringler, P., Muller, S. A., Rammner, B., Grater, F., Hub, J. S., De Groot, B. L., Mieskes, G., Moriyama, Y., Klingauf, J., Grubmuller, H., Heuser, J., Wieland, F., and Jahn, R. (2006) Molecular anatomy of a trafficking organelle. Cell 127, 831–846.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew K. Ottens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ottens, A.K. (2009). The Methodology of Neuroproteomics. In: Ottens, A., Wang, K. (eds) Neuroproteomics. Methods in Molecular Biology, vol 566. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-562-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-562-6_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-934115-84-8

  • Online ISBN: 978-1-59745-562-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics