Skip to main content

Development of Bacterial Vectors for Tumor-Targeted Gene Therapy

  • Protocol
  • First Online:
Book cover Gene Therapy of Cancer

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 542))

Summary

Gene therapy holds great promise for the treatment of cancer. The success of the strategy relies on effective gene transfer into tumor microenvironments. Although a variety of gene delivery vehicles, such as viral vectors, has been developed, most of them suffer from some limitations, including inadequate tumor targeting, inefficient gene transfer, and potential toxicity. This situation suggests that it is necessary to develop novel vectors for effective tumor-targeted gene transfer. The discovery of tumor-targeting bacteria has spurred interest in the use of these bacteria as gene transfer vectors. In this review, we focus on the current status of the development of bacterial vectors for cancer gene therapy and highlight some of the directions that the field may take.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cross D, Burmester JK. (2006) Gene therapy for cancer treatment: past, present and future. Clin Med Res. 4:218–27.

    Article  PubMed  CAS  Google Scholar 

  2. Palmer DH, Young LS, Mautner V. (2006) Cancer gene-therapy: clinical trials. Trends Biotechnol. 24:76–82.

    Article  PubMed  CAS  Google Scholar 

  3. Seth P. (2005) Vector-mediated cancer gene therapy: an overview. Cancer Biol Ther. 4:512–7.

    Article  PubMed  CAS  Google Scholar 

  4. Dong JY, Woraratanadharm J. (2005) Gene therapy vector design strategies for the treatment of cancer. Future Oncol. 1:361–73.

    Article  PubMed  CAS  Google Scholar 

  5. Möse JR, Möse G. (1964) Oncolysis by Clostridia. I. Activity of Clostridium Butyricum (M-55) and Other nonpathogenic Clostridia against the Ehrlich carcinoma. Cancer Res. 24:212–6

    Google Scholar 

  6. 6.. Gericke D and Engelbart K. (1964) Oncolysis by Clostridia. II. Experiments on a Tumor Spectrum With a Variety of Clostridia in Combination with Heavy Metal. Cancer Res. 24: 217–221

    PubMed  CAS  Google Scholar 

  7. Kimura NT, Taniguchi S, Aoki K, Baba T. (1980) Selective localization and growth of Bifidobacterium bifidum in mouse tumors following intravenous administration. Cancer Res. 40:2061–8.

    PubMed  CAS  Google Scholar 

  8. Pawelek JM, Low KB, Bermudes D. (1997) Tumor-targeted Salmonella as a novel anticancer vector. Cancer Res. 57:4537–44.

    PubMed  CAS  Google Scholar 

  9. Sznol M, Lin SL, Bermudes D, Zheng LM, King I. (2000) Use of preferentially replicating bacteria for the treatment of cancer. J Clin Invest. 105:1027–30.

    Article  PubMed  CAS  Google Scholar 

  10. Bermudes D, Low KB, Pawelek J, Feng M, Belcourt M, Zheng LM, King I. (2001) Tumour-selective Salmonella-based cancer therapy. Biotechnol Genet Eng Rev. 18:219–33.

    PubMed  CAS  Google Scholar 

  11. Pawelek JM, Low KB, Bermudes D. (2003) Bacteria as tumour-targeting vectors. Lancet Oncol. 4:548–56.

    Article  PubMed  Google Scholar 

  12. Ryan RM, Green J, Lewis CE. (2006) Use of bacteria in anti-cancer therapies. Bioessays. 28:84–94.

    Article  PubMed  CAS  Google Scholar 

  13. Schmidt W, Fabricius EM, Schneeweiss U. (2006) The tumour-Clostridium phenomenon: 50 years of developmental research. Int J Oncol. 29:1479–92.

    PubMed  CAS  Google Scholar 

  14. Mengesha A, Dubois L, Chiu RK, Paesmans K, Wouters BG, Lambin P, Theys J. (2007) Potential and limitations of bacterial-mediated cancer therapy. Front Biosci. 12:3880–91.

    Article  PubMed  CAS  Google Scholar 

  15. Brown JM, Wilson WR. (2004) Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer. 4:437–47.

    Article  PubMed  CAS  Google Scholar 

  16. Zhou J, Schmid T, Schnitzer S, Brune B. (2006) Tumor hypoxia and cancer progression. Cancer Lett. 237:10–21.

    Article  PubMed  CAS  Google Scholar 

  17. Dang LH, Bettegowda C, Huso DL, Kinzler KW, Vogelstein B. (2001) Combination bacteriolytic therapy for the treatment of experimental tumors. Proc Natl Acad Sci. 98:15155–60.

    Article  PubMed  CAS  Google Scholar 

  18. Agrawal N, Bettegowda C, Cheong I, Geschwind JF, Drake CG, Hipkiss EL, Tatsumi M, Dang LH, Diaz LA Jr, Pomper M, Abusedera M, Wahl RL, Kinzler KW, Zhou S, Huso DL, Vogelstein B. (2004) Bacteriolytic therapy can generate a potent immune response against experimental tumors. Proc Natl Acad Sci USA. 101:15172–7.

    Article  PubMed  CAS  Google Scholar 

  19. Avogadri F, Martinoli C, Petrovska L, Chiodoni C, Transidico P, Bronte V, Longhi R, Colombo MP, Dougan G, Rescigno M. (2005) Cancer immunotherapy based on killing of Salmonella-infected tumor cells. Cancer Res. 65:3920–7

    Article  PubMed  CAS  Google Scholar 

  20. Jia LJ, Wei DP, Sun QM, Jin GH, Li SF, Huang Y, Hua ZC. (2007) Tumor-targeting Salmonella typhimurium improves cyclophosphamide chemotherapy at maximum tolerated dose and low-dose metronomic regimens in a murine melanoma model. Int J Cancer. 121:666–74.

    Article  PubMed  CAS  Google Scholar 

  21. Lee CH, Wu CL, Shiau AL. (2007) Salmonella choleraesuis as an anticancer agent in a syngeneic model of orthotopic hepatocellular carcinoma. Int J Cancer. (in print).21. 21. Lee CH, Wu CL, Shiau AL. (2007) Salmonella choleraesuis as an anticancer agent in a syngeneic model of orthotopic hepatocellular carcinoma. Int J Cancer. (in print).

    Google Scholar 

  22. Rosenberg SA, Spiess PJ, Kleiner DE. (2002) Antitumor effects in mice of the intravenous injection of attenuated Salmonella typhimurium. J Immunother. 25:218–25.

    Article  PubMed  CAS  Google Scholar 

  23. Rintoul RC, Sethi T. (2001) The role of extracellular matrix in small-cell lung cancer. Lancet Oncol. 2:437–42

    Article  PubMed  CAS  Google Scholar 

  24. Zhou S, Bettegowda C, Agrawal N. (2004) combination bacteriolytic cancer therapy: attacking cancer form inside out. Discov Med. 4:33–37

    PubMed  Google Scholar 

  25. Waehler R, Russell SJ, Curiel DT. (2007) Engineering targeted viral vectors for gene therapy. Nat Rev Genet. 8:573–87.

    Article  PubMed  CAS  Google Scholar 

  26. Bettegowda C, Huang X, Lin J, Cheong I, Kohli M, Szabo SA, Zhang X, Diaz LA Jr, Velculescu VE, Parmigiani G, Kinzler KW, Vogelstein B, Zhou S. (2006) The genome and transcriptomes of the anti-tumor agent Clostridium novyi-NT. Nat Biotechnol. 24:1573–80.

    Article  PubMed  CAS  Google Scholar 

  27. Baker S, Dougan G. (2007) The genome of Salmonella enterica serovar Typhi. Clin Infect Dis. 45:S29–33.

    Article  PubMed  CAS  Google Scholar 

  28. Low KB, Ittensohn M, Le T, Platt J, Sodi S, Amoss M, Ash O, Carmichael E, Chakraborty A, Fischer J, Lin SL, Luo X, Miller SI, Zheng L, King I, Pawelek JM, Bermudes D. (1999) Lipid A mutant Salmonella with suppressed virulence and TNFalpha induction retain tumor-targeting in vivo. Nat Biotechnol. 17:37–41.

    PubMed  CAS  Google Scholar 

  29. Toso JF, Gill VJ, Hwu P, Marincola FM, Restifo NP, Schwartzentruber DJ, Sherry RM, Topalian SL, Yang JC, Stock F, Freezer LJ, Morton KE, Seipp C, Haworth L, Mavroukakis S, White D, MacDonald S, Mao J, Sznol M, Rosenberg SA. (2002) Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma. J Clin Oncol. 20:142–52.

    Article  PubMed  Google Scholar 

  30. Low KB, Ittensohn M, Luo X, Zheng LM, King I, Pawelek JM, Bermudes D. (2004) Construction of VNP20009: a novel, genetically stable antibiotic-sensitive strain of tumor-targeting Salmonella for parenteral administration in humans. Methods Mol Med. 90:47–60.

    PubMed  CAS  Google Scholar 

  31. Diaz LA Jr, Cheong I, Foss CA, Zhang X, Peters BA, Agrawal N, Bettegowda C, Karim B, Liu G, Khan K, Huang X, Kohli M, Dang LH, Hwang P, Vogelstein A, Garrett-Mayer E, Kobrin B, Pomper M, Zhou S, Kinzler KW, Vogelstein B, Huso DL. (2005) Pharmacologic and toxicologic evaluation of C. novyi-NT spores. Toxicol Sci. 88:562–75.

    Article  PubMed  CAS  Google Scholar 

  32. 32.. Cunningham C, Nemunaitis J. (2001) A phase I trial of genetically modified Salmonella typhimurium expressing cytosine deaminase (TAPET-CD, VNP20029) administered by intratumoral injection in combination with 5-fluorocytosine for patients with advanced or metastatic cancer. Protocol no: CL-017. Version: April 9, 2001.Hum Gene Ther 12: 1594–6

    PubMed  CAS  Google Scholar 

  33. 33.. Carey R, Holland J, Whang H, Neter E, Bryant B. (1967) Clostridial oncolysis in man. Eur J Cancer. 3, 37–46

    Google Scholar 

  34. Heppner F, Mose JR. (1978) The liquefaction (oncolysis) of malignant gliomas by a non pathogenic Clostridium. Acta Neurochir. 42:123–5

    Article  CAS  Google Scholar 

  35. Luo X, Li Z, Lin S, Le T, Ittensohn M, Bermudes D, Runyab JD, Shen SY, Chen J, King IC, Zheng LM. (2001) Antitumor effect of VNP20009, an attenuated Salmonella, in murine tumor models. Oncol Res. 12:501–8.

    PubMed  CAS  Google Scholar 

  36. Zhao M, Geller J, Ma H, Yang M, Penman S, Hoffman RM. (2007) Monotherapy with a tumor-targeting mutant of Salmonella typhimurium cures orthotopic metastatic mouse models of human prostate cancer. Proc Natl Acad Sci USA. 104:10170–4.

    Article  PubMed  CAS  Google Scholar 

  37. Lambin P, Theys J, Landuyt W, Rijken P, van der Kogel A, van der Schueren E, Hodgkiss R, Fowler J, Nuyts S, de Bruijn E, Van Mellaert L, Anne J. (1998) Colonisation of Clostridium in the body is restricted to hypoxic and necrotic areas of tumours. Anaerobe. 4:183–8.

    Article  PubMed  CAS  Google Scholar 

  38. Yazawa K, Fujimori M, Amano J, Kano Y, Taniguchi S. (2000) Bifidobacterium longum as a delivery system for cancer gene therapy: selective localization and growth in hypoxic tumors. Cancer Gene Ther. 7:269–74.

    Article  PubMed  CAS  Google Scholar 

  39. Portsmouth D, Hlavaty J, Renner M. (2007) Suicide genes for cancer therapy. Mol Aspects Med. 28:4–41.

    Article  PubMed  CAS  Google Scholar 

  40. Xu G, McLeod HL. (2001) Strategies for enzyme/prodrug cancer therapy. Clin Cancer Res. 7:3314–24.

    PubMed  CAS  Google Scholar 

  41. Fox ME, Lemmon MJ, Mauchline ML, Davis TO, Giaccia AJ, Minton NP, Brown JM. (1996) Anaerobic bacteria as a delivery system for cancer gene therapy: in vitro activation of 5-fluorocytosine by genetically engineered clostridia. Gene Ther. 3:173–8.

    PubMed  CAS  Google Scholar 

  42. Lemmon MJ, van Zijl P, Fox ME, Mauchline ML, Giaccia AJ, Minton NP, Brown JM. (1997) Anaerobic bacteria as a gene delivery system that is controlled by the tumor microenvironment. Gene Ther. 4:791–6.

    Article  PubMed  CAS  Google Scholar 

  43. Theys J, Landuyt W, Nuyts S, Van Mellaert L, van Oosterom A, Lambin P, Anne J. (2001) Specific targeting of cytosine deaminase to solid tumors by engineered Clostridium acetobutylicum. Cancer Gene Ther. 8:294–7.

    Article  PubMed  CAS  Google Scholar 

  44. Nuyts S, Theys J, Landuyt W, van Mellaert L, Lambin P, Anne J. (2001) Increasing specificity of anti-tumor therapy: cytotoxic protein delivery by non-pathogenic clostridia under regulation of radio-induced promoters. Anticancer Res. 21:857–61.

    PubMed  CAS  Google Scholar 

  45. Theys J, Pennington O, Dubois L, Anlezark G, Vaughan T, Mengesha A, Landuyt W, Anne J, Burke PJ, Durre P, Wouters BG, Minton NP, Lambin P. (2006) Repeated cycles of Clostridium-directed enzyme prodrug therapy result in sustained antitumour effects in vivo. Br J Cancer. 95:1212–9.

    Article  PubMed  CAS  Google Scholar 

  46. Pawelek JM, Low KB, Bermudes D. (1997) Tumor-targeted Salmonella as a novel anticancer vector. Cancer Res. 57:4537–44.

    PubMed  CAS  Google Scholar 

  47. Zheng LM, Luo X, Feng M, Li Z, Le T, Ittensohn M, Trailsmith M, Bermudes D, Lin SL, King IC. (2000) Tumor amplified protein expression therapy: Salmonella as a tumor-selective protein delivery vector. Oncol Res. 12:127–35.

    PubMed  CAS  Google Scholar 

  48. King I, Bermudes D, Lin S, Belcourt M, Pike J, Troy K, Le T, Ittensohn M, Mao J, Lang W, Runyan JD, Luo X, Li Z, Zheng LM. (2002) Tumor-targeted Salmonella expressing cytosine deaminase as an anticancer agent. Hum Gene Ther. 13:1225–33.

    Article  PubMed  CAS  Google Scholar 

  49. Nakamura T, Sasaki T, Fujimori M, Yazawa K, Kano Y, Amano J, Taniguchi S. (2002) Cloned cytosine deaminase gene expression of Bifidobacterium longum and application to enzyme/pro-drug therapy of hypoxic solid tumors. Biosci Biotechnol Biochem. 66:2362–6.

    Article  PubMed  CAS  Google Scholar 

  50. Sasaki T, Fujimori M, Hamaji Y, Hama Y, Ito K, Amano J, Taniguchi S. (2006) Genetically engineered Bifidobacterium longum for tumor-targeting enzyme-prodrug therapy of autochthonous mammary tumors in rats. Cancer Sci. 97:649–57.

    Article  PubMed  CAS  Google Scholar 

  51. Hamaji Y, Fujimori M, Sasaki T, Matsuhashi H, Matsui-Seki K, Shimatani-Shibata Y, Kano Y, Amano J, Taniguchi S. (2007) Strong enhancement of recombinant cytosine deaminase activity in Bifidobacterium longum for tumor-targeting enzyme/prodrug therapy. Biosci Biotechnol Biochem. 71:874–83.

    Article  PubMed  CAS  Google Scholar 

  52. Folkman J. (1989) What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst. 82:4–6.

    Google Scholar 

  53. Kerbel RS, Kamen BA. (2004) The anti-angiogenic basis of metronomic chemotherapy. Nat Rev Cancer. 4: 423–36

    Article  PubMed  CAS  Google Scholar 

  54. Persano L, Crescenzi M, Indraccolo S. (2007) Anti-angiogenic gene therapy of cancer: current status and future prospects. Mol Aspects Med. 28:87–114

    Article  PubMed  CAS  Google Scholar 

  55. Lee CH, Wu CL, Shiau AL. (2005) Systemic administration of attenuated Salmonella choleraesuis carrying thrombospondin-1 gene leads to tumor-specific transgene expression, delayed tumor growth and prolonged survival in the murine melanoma model. Cancer Gene Ther. 12, 175–84

    Article  PubMed  CAS  Google Scholar 

  56. Lee CH, Wu CL Shiau AL. (2004) Endostatin gene therapy delivered by Salmonella choleraesuis in murine tumor models. J Gene Med.6, 1382–93S

    Article  PubMed  CAS  Google Scholar 

  57. Li X, Fu GF, Fan YR, Liu WH, Liu XJ, Wang JJ, Xu GX. (2003) Bifidobacterium adolescentis as a delivery system of endostatin for cancer gene therapy: selective inhibitor of angiogenesis and hypoxic tumor growth. Cancer Gene Ther. 10:105–11.

    Article  PubMed  CAS  Google Scholar 

  58. Fu GF, Li X, Hou YY, Fan YR, Liu WH, Xu GX. (2005) Bifidobacterium longum as an oral delivery system of endostatin for gene therapy on solid liver cancer. Cancer Gene Ther. 12:133–40.

    Article  PubMed  CAS  Google Scholar 

  59. Eckmann L, Kagnoff MF. (2001) Cytokines in host defense against Salmonella. Microbes Infect. 3:1191–4

    Article  PubMed  CAS  Google Scholar 

  60. Cao Y. (2001) Endogenous angiogenesis inhibitors and their therapeutic implications. Int J Biochem Cell Biol. 33:357–69

    Article  Google Scholar 

  61. Jia LJ, Xu HM, Ma DY, Hu QG, Huang XF, Jiang WH, Li SF, Jia KZ, Huang QL, Hua ZC. (2005) Enhanced therapeutic effect by combination of tumor-targeting Salmonella and endostatin in murine melanoma model. Cancer Biol Ther. 4:840–5.

    Article  PubMed  CAS  Google Scholar 

  62. Dang LH, Bettegowda C, Agrawal N, Cheong I, Huso D, Frost P, Loganzo F, Greenberger L, Barkoczy J, Pettit GR, Smith AB 3rd, Gurulingappa H, Khan S, Parmigiani G, Kinzler KW, Zhou S, Vogelstein B. (2004) Targeting vascular and avascular compartments of tumors with C. novyi-NT and anti-microtubule agents. Cancer Biol Ther. 3:326–37.

    Article  PubMed  CAS  Google Scholar 

  63. Rescigno M, Avogadri F, Curigliano G. (2007) Challenges and prospects of immunotherapy as cancer treatment. Biochim Biophys Acta. 1776:108–23.

    PubMed  CAS  Google Scholar 

  64. Podhajcer OL, Lopez MV, Mazzolini G. (2007) Cytokine gene transfer for cancer therapy. Cytokine Growth Factor Rev. 18:183–94.

    Article  PubMed  CAS  Google Scholar 

  65. Del Vecchio M, Bajetta E, Canova S, Lotze MT, Wesa A, Parmiani G, Anichini A. (2007) Interleukin-12: biological properties and clinical application. Clin Cancer Res. 13:4677–85.

    Article  PubMed  CAS  Google Scholar 

  66. 66.Theys J, Nuyts S, Landuyt W, Van Mellaert L, Dillen C, Bohringer M, Durre P, Lambin P, Anne J. (1999) Stable Escherichia coli-Clostridium acetobutylicum shuttle vector for secretion of murine tumor necrosis factor alpha. Appl Environ Microbiol. 65:4295–300.

    PubMed  CAS  Google Scholar 

  67. Nuyts S, Van Mellaert L, Theys J, Landuyt W, Bosmans E, Anne J, Lambin P. (2001) Radio-responsive recA promoter significantly increases TNFalpha production in recombinant clostridia after 2 Gy irradiation. Gene Ther. 8:1197–201.

    Article  PubMed  CAS  Google Scholar 

  68. Lin S, Spinka T, Le T, Pianta T, King I, Belcourt F, Li Z. (1999) Tumor-directed delivery and amplification of tumor-necrosis factor-alpha (TNF) by attenuated Salmonella typhimurium. Clin Cancer Res. 5, 3822

    Google Scholar 

  69. Barbe S, Van Mellaert L, Theys J, Geukens N, Lammertyn E, Lambin P, Anne J. (2005) Secretory production of biologically active rat interleukin-2 by Clostridium acetobutylicum DSM792 as a tool for anti-tumor treatment. FEMS Microbiol Lett. 246:67–73.

    Article  PubMed  CAS  Google Scholar 

  70. Loeffler M, Le'Negrate G, Krajewska M, Reed JC. (2007) Attenuated Salmonella engineered to produce human cytokine LIGHT inhibit tumor growth. Proc Natl Acad Sci. 104:12879–83.

    Article  PubMed  CAS  Google Scholar 

  71. Iorns E, Lord CJ, Turner N, Ashworth A. (2007) Utilizing RNA interference to enhance cancer drug discovery. Nat Rev Drug Discov. 6:556–68.

    Article  PubMed  CAS  Google Scholar 

  72. Kim DH, Rossi JJ. (2007) Strategies for silencing human disease using RNA interference. Nat Rev Genet 8:173–84.

    Article  PubMed  CAS  Google Scholar 

  73. Li CX, Parker A, Menocal E, Xiang S, Borodyansky L, Fruehauf JH. (2006) Delivery of RNA interference. Cell Cycle. 5:2103–9.

    Article  PubMed  CAS  Google Scholar 

  74. Xiang S, Fruehauf J, Li CJ. (2006) Short hairpin RNA-expressing bacteria elicit RNA interference in mammals. Nat Biotechnol. 24:697–702.

    Article  PubMed  CAS  Google Scholar 

  75. Zhang L, Gao L, Zhao L, Guo B, Ji K, Tian Y, Wang J, Yu H, Hu J, Kalvakolanu DV, Kopecko DJ, Zhao X, Xu DQ. (2007) Intratumoral delivery and suppression of prostate tumor growth by attenuated Salmonella enterica serovar typhimurium carrying plasmid-based small interfering RNAs. Cancer Res. 67:5859–64.

    Article  PubMed  CAS  Google Scholar 

  76. Sun Y. (2006) E3 ubiquitin ligases as cancer targets and biomarkers. Neoplasia. 8(8):645–54.

    Article  PubMed  CAS  Google Scholar 

  77. Bandres E, Agirre X, Ramirez N, Zarate R, Garcia-Foncillas J. (2007) MicroRNAs as cancer players: potential clinical and biological effects. DNA Cell Biol. 26:273–82.

    Article  PubMed  CAS  Google Scholar 

  78. Esquela-Kerscher A, Slack FJ. (2006) Oncomirs – microRNAs with a role in cancer. Nat Rev Cancer. 6:259–69.

    Article  PubMed  CAS  Google Scholar 

  79. Yu YA, Shabahang S, Timiryasova TM, Zhang Q, Beltz R, Gentschev I, Goebel W, Szalay AA. (2004) Visualization of tumors and metastases in live animals with bacteria and vaccinia virus encoding light-emitting proteins. Nat Biotechnol. 22:313–20.

    Article  PubMed  CAS  Google Scholar 

  80. Stritzker J, Weibel S, Hill PJ, Oelschlaeger TA, Goebel W, Szalay AA. (2007) Tumor-specific colonization, tissue distribution, and gene induction by probiotic Escherichia coli Nissle 1917 in live mice. Int J Med Microbiol. 297:151–62.

    Article  PubMed  CAS  Google Scholar 

  81. Zhao M, Yang M, Li XM, Jiang P, Baranov E, Li S, Xu M, Penman S, Hoffman RM. (2005) Tumor-targeting bacterial therapy with amino acid auxotrophs of GFP-expressing Salmonella typhimurium. Proc Natl Acad Sci. 102:755–60.

    Article  PubMed  CAS  Google Scholar 

  82. Low KB, Ittensohn M, Le T, Platt J, Sodi S, Amoss M, Ash O, Carmichael E, Chakraborty A, Fischer J, Lin SL, Luo X, Miller SI, Zheng L, King I, Pawelek JM, Bermudes D. (1999) Lipid A mutant Salmonella with suppressed virulence and TNFalpha induction retain tumor-targeting in vivo. Nat Biotechnol. 17:37–41.

    PubMed  CAS  Google Scholar 

  83. Pawelek JM, Sodi S, Chakraborty AK, Platt JT, Miller S, Holden DW, Hensel M, Low KB. (2002) Salmonella pathogenicity island-2 and anticancer activity in mice. Cancer Gene Ther. 9:813–8.

    Article  PubMed  CAS  Google Scholar 

  84. Lee CH, Wu CL, Tai YS, Shiau AL. (2005) Systemic administration of attenuated Salmonella choleraesuis in combination with cisplatin for cancer therapy. Mol Ther. 11:707–16.

    Article  PubMed  CAS  Google Scholar 

  85. Theys J, Landuyt W, Nuyts S, Van Mellaert L, Bosmans E, Rijnders A, Van Den Bogaert W, van Oosterom A, Anne J, Lambin P. (2001) Improvement of Clostridium tumour targeting vectors evaluated in rat rhabdomyosarcomas. FEMS Immunol Med Microbiol. 30:37–41.

    Article  PubMed  CAS  Google Scholar 

  86. Bereta M, Hayhurst A, Gajda M, Chorobik P, Targosz M, Marcinkiewicz J, Kaufman HL. (2007) Improving tumor targeting and therapeutic potential of Salmonella VNP20009 by displaying cell surface CEA-specific antibodies. Vaccine. 25:4183–92.

    Article  PubMed  CAS  Google Scholar 

  87. Jaracz S, Chen J, Kuznetsova LV, Ojima I. (2005) Recent advances in tumor-targeting anticancer drug conjugates. Bioorg Med Chem. 13:5043–54.

    Article  PubMed  CAS  Google Scholar 

  88. Mori T. (2004) Cancer-specific ligands identified from screening of peptide-display libraries. Curr Pharm Des. 10:2335–43.

    Article  PubMed  CAS  Google Scholar 

  89. Schmidt FR. (2004) Recombinant expression systems in the pharmaceutical industry. Appl Microbiol Biotechnol. 65:363–72.

    Article  PubMed  CAS  Google Scholar 

  90. Rana TM. (2007) Illuminating the silence: understanding the structure and function of small RNAs. Nat Rev Mol Cell Biol. 8:23–36.

    Article  PubMed  CAS  Google Scholar 

  91. Palumbo RN, Wang C. (2006) Bacterial invasin: structure, function, and implication for targeted oral gene delivery. Curr Drug Deliv. 3:47–53.

    Article  PubMed  CAS  Google Scholar 

  92. Anderson JC, Clarke EJ, Arkin AP, Voigt CA. (2006) Environmentally controlled invasion of cancer cells by engineered bacteria. J Mol Biol. 355:619–27.

    Article  PubMed  CAS  Google Scholar 

  93. Xu F, Ulmer JB. (2003) Attenuated salmonella and Shigella as carriers for DNA vaccines. J Drug Target. 11:481–8.

    Article  PubMed  CAS  Google Scholar 

  94. Loessner H, Endmann A, Leschner S, Bauer H, Zelmer A, Zur Lage S, Westphal K, Weiss S. (2007) Improving live attenuated bacterial carriers for vaccination and therapy. Int J Med Microbiol. (in print).

    Google Scholar 

  95. Hess J, Gentschev I, Miko D, Welzel M, Ladel C, Goebel W, Kaufmann SH. (1996) Superior efficacy of secreted over somatic antigen display in recombinant Salmonella vaccine induced protection against listeriosis. Proc Natl Acad Sci. USA. 93:1458–63.

    Article  PubMed  CAS  Google Scholar 

  96. Gentschev I, Dietrich G, Spreng S, Kolb-Maurer A, Brinkmann V, Grode L, Hess J, Kaufmann SH, Goebel W. (2001) Recombinant attenuated bacteria for the delivery of subunit vaccines. Vaccine. 19:2621–8.

    Article  PubMed  CAS  Google Scholar 

  97. Goussard S, Grillot-Courvalin C, Courvalin P. (2003) Eukaryotic promoters can direct protein synthesis in Gram-negative bacteria. J Mol Microbiol Biotechnol. 6:211–8.

    Article  PubMed  CAS  Google Scholar 

  98. Nuyts S, Van Mellaert L, Theys J, Landuyt W, Lambin P, Anne J. (2001) The use of radiation-induced bacterial promoters in anaerobic conditions: a means to control gene expression in clostridium-mediated therapy for cancer. Radiat Res. 155:716–23.

    Article  PubMed  CAS  Google Scholar 

  99. Mengesha A, Dubois L, Lambin P, Landuyt W, Chiu RK, Wouters BG, Theys J. (2006) Development of a flexible and potent hypoxia-inducible promoter for tumor-targeted gene expression in attenuated Salmonella. Cancer Biol Ther. 5:1120–8.

    Article  PubMed  CAS  Google Scholar 

  100. Weber W, Fussenegger M. (2006) Pharmacologic transgene control systems for gene therapy. J Gene Med. 8:535–56.

    Article  PubMed  CAS  Google Scholar 

  101. Loessner H, Endmann A, Leschner S, Westphal K, Rohde M, Miloud T, Hammerling G, Neuhaus K, Weiss S. (2007) Remote control of tumour-targeted Salmonella enterica serovar Typhimurium by the use of L-arabinose as inducer of bacterial gene expression in vivo. Cell Microbiol. 9:1529–37.

    Article  PubMed  CAS  Google Scholar 

  102. Scott SD, Greco O. (2004) Radiation and hypoxia inducible gene therapy systems. Cancer Metastasis Rev. 23:269–76.

    Article  PubMed  CAS  Google Scholar 

  103. Mezhir JJ, Schmidt H, Yamini B, Senzer NN, Posner MC, Kufe DW, Weichselbaum RR. (2005) Chemo-inducible gene therapy. Anticancer Drugs. 16:1053–8.

    Article  PubMed  CAS  Google Scholar 

  104. Jia LJ, Wei DP, Sun QM, Huang Y, Wu Q, Hua ZC. (2007) Oral delivery of tumor-targeting Salmonella for cancer therapy in murine tumor models. Cancer Sci. 98:1107–12.

    Article  PubMed  CAS  Google Scholar 

  105. Luo Y, Zhou H, Mizutani M, et al. (2003) Transcription factor Fos-related antigen 1 is an effective target for a breast cancer vaccine. Proc Natl Acad Sci USA. 100:8850–5.

    Article  PubMed  CAS  Google Scholar 

  106. Luo Y, Zhou H, Mizutani M, et al. (2005) A DNA vaccine targeting Fos-related antigen 1enhanced by IL-18 induces long-lived T-cell memory against tumor recurrence. Cancer Res. 65:3419–27.

    Article  PubMed  CAS  Google Scholar 

  107. Echeverri CJ, Perrimon N. (2006) High-throughput RNAi screening in cultured cells: a user's guide. Nat Rev Genet. 7:373–84.

    Article  PubMed  CAS  Google Scholar 

  108. Ngo VN, Davis RE, Lamy L, Yu X, Zhao H, Lenz G, Lam LT, Dave S, Yang L, Powell J, Staudt LM. (2006) A loss-of-function RNA interference screen for molecular targets in cancer. Nature. 441:106–10.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Brooks Low, Dr. John Pawelek, Dr. Yi Sun, and Dr. Zhen Wang for critical reading of the manuscript and editorial work. The authors are grateful to grants from the Chinese National Nature Sciences Foundation (30425009, 30500637) and the Jiangsu Provincial Nature Sciences Foundation (BK2007715).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Jun Jia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Jia, LJ., Hua, ZC. (2009). Development of Bacterial Vectors for Tumor-Targeted Gene Therapy . In: Walther, W., Stein, U. (eds) Gene Therapy of Cancer. Methods in Molecular Biology™, vol 542. Humana Press. https://doi.org/10.1007/978-1-59745-561-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-561-9_7

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-85-5

  • Online ISBN: 978-1-59745-561-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics