Skip to main content

Production of Plasmid DNA as Pharmaceutical

  • Protocol
  • First Online:
Book cover Gene Therapy of Cancer

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 542))

Summary

Developments in gene therapy, cell therapy, and DNA vaccination require a pharmaceutical gene vector that, on one hand, fulfils the properties to express the encoded information—preferably at the right place, time, and level and, on the other hand, is safe and productive under good manufacturing practices (GMP). Here we summarize the features of producing and modifying these nonviral gene vectors and ensuring the required quality to treat cells and humans or animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alton, E. W. F. W., Middleton, P. G., Caplen, N. J., Smith, S. N., Steel, D. M., Munkonge, F. M., Jeffery, P. K., Geddes, D. M., Hart, S. L., Williamson, R., Fasold, K. I., Miller, A. D., Dickinsons, P., Stevenson, B. J., McLachlan, G., Dorin, J. R., and Porteous, D. J. (1993) Non-invasive liposome-mediated gene delivery can correct the ion transport defect in cystic fibrosis mutant mice. Nat. Genet. 5, 135–142.

    Article  PubMed  CAS  Google Scholar 

  2. Caplen, N. J., Gao, X., Hayes, P., Elaswarapu, R., Fisher, G., Kinrade, E., Chakera, A., Schorr, J., Hughes, B., Dorin, J. R., Porteous, D. J., Alton, E. W. F. W., Geddes, D. M., Coutelle, C., Williamson, R., Huang, L., and Gilchrist, C. (1994) Gene therapy for cystic fibrosis in humans by liposome-mediated DNA transfer: U.K. regulatory process and production of resources. Gene Ther. 1, 139–147.

    PubMed  CAS  Google Scholar 

  3. Michel, M. L., Davis, H. L., Schleef, M., Mancini, M., Tiollais, P., and Whalen, R. G. (1995) DNA-mediated immunization to the hepatitis B surface antigen in mice: Aspects of the humoral response mimic hepatitis B viral infection in humans. Proc. Natl. Acad. Sci. USA 92, 5307–5311.

    Article  PubMed  CAS  Google Scholar 

  4. Major, M. E., Vitvitski, L., Mink, M. A., Schleef, M., Whalen, R. G., Trépo, C., and Inchauspé, G. (1995) DNA based immunisation using chimeric vectors for the induction of immune responses against the hepatitis C virus nucleocapsid. J. Virology 69, 5798–5805.

    PubMed  CAS  Google Scholar 

  5. Le Borgne, S., Mancini, M., Le Grand, R., Schleef, M., Dormont, D., Tiollais, P., Rivière, Y., and Michel, M. L. (1998) In vivo induction of specific cytotoxic T lymphocytes in mice and rhesus macaques immunized with DNA vector encoding HIV epitope fused with hepatitis B surface antigen. Virology 240, 304–315.

    Article  PubMed  CAS  Google Scholar 

  6. Gregoriadis, G. (1998) Genetic vaccines: strategies for optimization. Pharm. Res. 15, 661–670.

    Article  PubMed  CAS  Google Scholar 

  7. Schirmbeck, R., van Kampen, J., Metzger, K., Wild, J., Grüner, B., Schleef, M., Hauser, H., and Reimann, J. (1999) DNA-based vaccination with polycistronic expression plasmids, in DNA Vaccines: Methods and Protocols (Lowrie, D. B., and Whalen, R. G. (Eds.), Humana, Totowa, NJ, pp. 313–322.

    Chapter  Google Scholar 

  8. Kanellos, T., Sylvester, I. D., Colin, R. H., and Russelk, P. H. (1999) DNA is as effective as protein at inducing antibody in fish. Vaccine 17, 965–972.

    Article  PubMed  CAS  Google Scholar 

  9. Wahren, B., and Liu, M. (2005) DNA Vaccines—An Overview, in DNA Pharmaceuticals: Formulation and Delivery in Gene Therapy, DNA Vaccination and Immunotherapy (Schleef, M., ed.), Wiley-VCH, Weinheim, pp. 1–6.

    Google Scholar 

  10. Schwarz, B., Kempf, T., Schillinger, U., Brill, Th., Plank, C., Köstlin, R., Gänsbacher, B., Hirschberger, J. (2008) Cloning of the feline cytokines IL-2, IFNy and GM-CSF for an adjuvant nonviral genetherapy of feline fibrosarcoma. Submitted.

    Google Scholar 

  11. CBER (1996) Points to consider on plasmid DNA vaccines for preventive infectious disease indications. (HFM-630), Center for Biologics Evaluation and Research, FDA, Rockville, MD.

    Google Scholar 

  12. CBER (1998) Guidance for industry: guidance for human somatic cell therapy and gene therapy. Center for Biologics Evaluation and Research, FDA, Rockville, MD.

    Google Scholar 

  13. Meager, A., Robertson, J. S. (1998) Regulatory and standardization issues for DNA and vectored vaccines. Curr. Res. Mol. Ther. 1, 262–265.

    CAS  Google Scholar 

  14. Robertson, J., and Griffiths, E. (1998) WHO guidelines for assuring the quality of DNA vaccines. Biologicals 26, 205–212.

    Article  PubMed  CAS  Google Scholar 

  15. Kneuer, C. M. (2005) DNA as a Pharmaceutical—Regulatory Aspects, in DNA Pharmaceuticals: Formulation and Delivery in Gene Therapy, DNA Vaccination and Immunotherapy (Schleef, M., ed.), Wiley-VCH, Weinheim, pp. 7–22.

    Google Scholar 

  16. Schleef, M. (ed.) (2001) Plasmids for therapy and vaccination. Wiley-VCH, Weinheim.

    Google Scholar 

  17. Schleef, M. (ed.) (2005) DNA pharmaceuticals. Wiley-VCH, Weinheim.

    Google Scholar 

  18. King, N. M. P., and Cohen-Haguenauer, O. (2008) En route to ethical recommendations for gene transfer clinical trials. Mol. Ther. 16, 432–438.

    Article  PubMed  CAS  Google Scholar 

  19. Schleef, M. (1999) Issues of large-scale plasmid manufacturing, in Biotechnology Vol. 5a: Recombinant proteins, monoclonal antibodies and therapeutic genes (Rehm, H. J., Reed, G., Pühler, A., and Stadler, P., eds), (Mountain, A., Ney, U., and Schomburg, D. volume eds) Wiley-VCH, Weinheim, pp. 443–470.

    Google Scholar 

  20. Hoare, M., Levy, M. S., Bracewell, D. G., Doig, S. D., Kong, S., Titchener-Hooker, N., Ward, J. M., and Dunnill, P. (2005) Bioprocess Engineering Issues That would be face in producing a DNA Vaccine at up to 100 m3 Fermentation Scale for an Influenza Pandemic. Biotechnol. Prog. 21, 1577–1592.

    Article  PubMed  CAS  Google Scholar 

  21. Urthaler, J., Buchinger, W., and Necina, R. (2005) Improved downstream process for the production of plasmid DNA for gene therapy. Act. Biochim. Polonica 52, 703–711.

    CAS  Google Scholar 

  22. Schleef, M., Schmidt, T., and Flaschel, E. (2000) Plasmid DNA for pharmaceutical applications. Dev. Biol. 104, 25–31.

    CAS  Google Scholar 

  23. Voss, C., Schmidt, T., and Schleef, M. (2005) From bulk to delivery: plasmid manufacturing and storage, in DNA Pharmaceuticals: Formulation and Delivery in Gene Therapy, DNA Vaccination and Immunotherapy (Schleef, M., ed.), Wiley-VCH, Weinheim, pp. 23–42.

    Google Scholar 

  24. Schmidt, T., Friehs, K., Schleef, M., Voss, K., and Flaschel, E. (1999) Quantitative analysis of plasmid forms by agarose and capillary gel electrophoresis. Analyt. Biochem. 274, 235–240.

    Article  PubMed  CAS  Google Scholar 

  25. Schmidt, T., Friehs, K., and Flaschel, E. (2001) Structures of plasmid DNA, in Plasmids for therapy and vaccination (Schleef, M., ed.), Wiley-VCH, Weinheim, pp. 29–43.

    Chapter  Google Scholar 

  26. Mayrhofer, P., Blaesen, M., Schleef, M., and Jechlinger, W.: Minicircle-DNA production by site specific recombination and protein-DNA interaction chromatography, submitted

    Google Scholar 

  27. Wolff, J. A., Williams, P., Acsadi, G., Jiao, S., Jani, A., and Chong, W. (1991) Conditions affecting direct gene transfer into redent muscle in vivo. Biotechniques 11, 474–485.

    PubMed  CAS  Google Scholar 

  28. Vogel, F. R., Sarver, H. (1995) Nucleic acid vaccines. Clin. Microbiol. Rev. 8, 406–410.

    PubMed  CAS  Google Scholar 

  29. Donnelly, J. J., Ulmer, J. B., Liu, M. (1997) DNA Vaccines. Life Sci. 60,163–172.

    Article  PubMed  CAS  Google Scholar 

  30. Helinski, D. (1979) Bacterial plasmids: autonomous replication and vehicles for gene cloning. CRC Crit. Rev. Biochem. 7, 83–101.

    Article  PubMed  CAS  Google Scholar 

  31. Summers, D. K. (1996) The Biology of Plasmids. Blackwell Science, Oxford.

    Book  Google Scholar 

  32. Schumann, W. (2001) The biology of plasmids, in Plasmids for therapy and vaccination (Schleef, M., ed.), Wiley-VCH, Weinheim, pp. 1–43.

    Chapter  Google Scholar 

  33. Davis, B. D., Dulbecco, R., Eisen, H. N., and Ginsberg H. S. (eds.) (1980) Microbiology. 3rd Edition, Harper & Row, Philadelphia.

    Google Scholar 

  34. Devlin, T. M. (ed.) (1997) Textbook of biochemistry with clinical correlations. 4th Edition, Wiley-Liss, New York.

    Google Scholar 

  35. Maucksch, C., Hoffmann, F., Schleef, M., Aneja M. K., Elfinger, M., Hartl, D., and Rudolph, C., Transgene expression of transfected supercoiled plasmid DNA concatemers in mammalian cells, submitted

    Google Scholar 

  36. Darquet, A. M., Cameron, B., Wils, P., Scherman, D., and Crouzet, J. (1997) A new DNA vehicle for nonviral gene delivery: supercoiled minicircle. Gene Therapy 4, 1341–1349.

    Article  PubMed  CAS  Google Scholar 

  37. Kreiss, P., Cameron, B., Rangara, R., Mailhe, P., Aguerre-Charriol, O., Airiau, M., Scherman, D., Crouzet, J., and Pitard, B. (1999) Plasmid DNA size does not affect the physiological properties of lipoplexes but modulates gene transfer efficiency. Nucleic Acids Res. 27, 3792–3798.

    Article  PubMed  CAS  Google Scholar 

  38. Voss, C., Schmidt, T., Schleef, M., Friehs, K., and Flaschel, E. (2006) Verwendung von isolierten homogenen Nukleinsäure-Multimeren für die nicht-virale Gentherapie oder genetische Impfung. DE10101761

    Google Scholar 

  39. Plank, C., Scherer, F., and Rudolph, C. (2005) Localized Nucleic Acid Delivery: A Discussion of Selected Methods, in DNA Pharmaceuticals: Formulation and Delivery in Gene Therapy, DNA Vaccination and Immunotherapy (Schleef, M., ed.), Wiley-VCH, Weinheim, pp. 55–116.

    Google Scholar 

  40. Bloquel, C., Fabre, E., Bureau, M. F., and Scherman, D. (2004) Plasmid DNA electrotransfer for intracellular and secreted proteins expression: new methodological developments and applications. J. Gene Med. 6, 11–23.

    Article  Google Scholar 

  41. Trollet, C., Bigey, P., and Scherman, D. (2005) Electrotransfection—An Overview, in DNA Pharmaceuticals: Formulation and Delivery in Gene Therapy, DNA Vaccination and Immunotherapy (Schleef, M., ed.), Wiley-VCH, Weinheim, pp. 189–218.

    Google Scholar 

  42. Mir, L. M. (2005) Electrogenetransfer in Clinical Applications, in DNA Pharmaceuticals: Formulation and Delivery in Gene Therapy, DNA Vaccination and Immunotherapy (Schleef, M., ed.), Wiley-VCH, Weinheim, pp. 219–226.

    Google Scholar 

  43. Davies, L. A., Hyde, S. C., and Gill, D. R. (2005) Plasmid Inhalation: Delivery to the Airways, in DNA Pharmaceuticals: Formulation and Delivery in Gene Therapy, DNA Vaccination and Immunotherapy (Schleef, M., ed.), Wiley-VCH, Weinheim, pp. 145–164.

    Google Scholar 

  44. Fabre, J. W. (2005) Hydrodynamic Gene Delivery, in DNA Pharmaceuticals: Formulation and Delivery in Gene Therapy, DNA Vaccination and Immunotherapy (Schleef, M., ed.), Wiley-VCH, Weinheim, pp. 165–172.

    Google Scholar 

  45. Iwanaga, K., Tominaga, K., Yamamoto, K., Habu, M., Maeda, H., Akifusa, S., Tsujiawa, T., Okinaga, T., Fukuda, J., and Nishihara, T. (2007). Local delivery system of ctotoxic agents to tumors by focused sonoporation. Cancer Gene Therapy 14, 354–363.

    Article  PubMed  CAS  Google Scholar 

  46. Zeira, E., Manevitch, A., Khatchatouriants, A., Pappo, O., Hyam, E., Darash-Yahana, M., Tavor, E., Honigman, A., Lewis, A., and Galun, E. (2003) Femtosecond Infrared Laser—An Efficient and Safe in Vivo Gene Delivery System for Prolonged Expression. Mol. Ther. 8, 342–350.

    Article  PubMed  CAS  Google Scholar 

  47. Bio World (1999) Entstehungsgeschichte eines neuen Medikamentes. Bio World 2, 31–34.

    Google Scholar 

  48. Buckland, B. C. (2005) The process development challenge for a new vaccine. Nature Med. 11(4), S16–S19.

    Article  PubMed  CAS  Google Scholar 

  49. Schleef, M., and Schmidt, T. (2004) Animal-free production of ccc-supercoiled plasmids for research and clinical applications. J. Gene Med. 6, S45–S53.

    Article  PubMed  CAS  Google Scholar 

  50. Schleef, M., Baier, R., Walther, W., Michel, M. L., and Schmeer, M. (2006) Long-Term stability study and topology analysis of plasmid DNA by capillary gel electrophoresis. BioProcess Int. 4(8), 38–40.

    CAS  Google Scholar 

  51. Yew, N. S., Zhao, H., Wu, I. H., Song, A., Tousignant, J. D., Przybylska, M., and Cheng, S. H. (2000) Reduced inflammatory response to plasmid DNA vectors by elimination and inhibition of immunostimulatory CpG motifs. Mol. Ther. 1, 255–262.

    Article  PubMed  CAS  Google Scholar 

  52. Krieg, A. M., Yi, A., Matson, S., Waldschmidt, T. J., Bishop, G. A., Teasdale, R., Koretzky, G. A., and Klinman, D. M. (1995) CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374, 546–549.

    Article  PubMed  CAS  Google Scholar 

  53. Hemmi, H., Takeuchi, O., Kawai, T., Kaisho, T., Sato, S., Sanjo, H., Matsumoto, M., Hoshino, K., Wagner, H., Takeda, K., and Akira, S. (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408, 740–745.

    Article  PubMed  CAS  Google Scholar 

  54. Klinman, D. M. (2004) Immunotherapeutic uses of CpG oligodeoxynucleotides. Nature Rev. 4, 1–10.

    Google Scholar 

  55. Braun, R., Babiuk, L. A., and Little van den Hurk, S. V. (1998) Compatibility of plasmids expressing different antigens in a single DNA vaccine formulation. J. Gen. Virol. 79, 2965–2970.

    PubMed  CAS  Google Scholar 

  56. Schneider, J., Gilbert, S. C., and Hill, A. (2001) pSG.MEPfTRAP—a first generation malaria DNA vaccine vector, in Plasmids for therapy and vaccination (Schleef, M., ed.), Wiley-VCH, Weinheim, pp. 103–117.

    Chapter  Google Scholar 

  57. Bridson, E. (1994) The development, manufacture and control of microbiological culture media. Unipath Ltd., Basingstoke, UK.

    Google Scholar 

  58. EMEA (2001) Note for guidance on minimising the risk of transmitting animal spongiform encephalopathy agents via human and veterinary medicinal products. CPMP/410/01 rev 1, London.

    Google Scholar 

  59. Schroeckh, V., Hartmann, M., Birch-Hirschfeld, E., and Riesenberg, D. (1992) Improvement of recombinant gene-expression in Escherichia coli for glucose-controlled continuous and fed-batch cultures. Appl. Microbiol. Biotechnol. 36, 487–492.

    Article  PubMed  CAS  Google Scholar 

  60. Horn, N., Budahazi, G., Marquet, M. (1998) Purification of plasmid DNA during column chromatography. U.S. Patent 5,707,812

    Google Scholar 

  61. Wang, F., and Lee, S. Y. (1998) High cell density culture of metabolically engineered Escherichia coli for the production of Poly(3-hydroxybutyrate) in a defined medium. Biotechniol. Bioeng. 58, 325–328.

    Article  CAS  Google Scholar 

  62. Lee, S. Y., and Chang, H. N. (1994) High cell density cultivation of Escherichia coli using sucrose as a carbon source. Biotechnol. Lett. 15, 971–974.

    Article  Google Scholar 

  63. Nakano, K., Rischke, M., Sato, S., and Märkl, H. (1997) Influence of acetic acid on the growth of Escherichia coli K12 during high-cell-density cultivation in a dialysis reactor. Appl. Microbiol. Biotechnol. 48, 597–601.

    Article  PubMed  CAS  Google Scholar 

  64. Schmidt, T., Schleef, M., Friehs, K., and Flaschel, E. (1999) Hochzelldichtefermentation zur Gewinnung von Plasmid-DNA für Gentherapie und genetische Impfung. BIOforum 22, 174–177.

    Google Scholar 

  65. Macaloney, G., Hall, J. W., Rollins, M. J., Draper, I., Anderson, K. B., Preston, J., Thompson, B. G., and McNeil, B. (1997) The utility and performance of near-infrared spectroscopy in simultaneous monitoring multiple components in a high cell density recombinant Escherichia coli production process. Bioproc. Eng. 17, 157–167.

    CAS  Google Scholar 

  66. Paalme, T., Tiisma, K., Kahru, A., Vanatalu, K., and Vilu, R. (1990) Glucose-limited fed-batch cultivation of Escherichia coli with computer-controlled fixed growth rate. Biotechnol. Bioeng. 35, 312–319.

    Article  PubMed  CAS  Google Scholar 

  67. Reinikainen, P., Korpela, K., Nissinen, V., Olkku, J., Söderlund, H., and Markkanen, P. (1989) Escherichia coli plasmid production in fermenter. Biotechnol. Bioeng. 33, 386–393.

    Article  PubMed  CAS  Google Scholar 

  68. Lahijani, R., Hulley, G., Soriano, G., Horn, N. A., and Marquet, M. (1996) High-yield production of pBR322-derived plasmids intended for human gene therapy by employing a temperature-controllable point mutation. Hum. Gene Ther. 7, 1971–1980.

    Article  PubMed  CAS  Google Scholar 

  69. Voss, C., Schmidt, T., Schleef, M., Friehs, K., and Flaschel, E. (2004) Effect of ammonium chloride on plasmid DNA production in high cell density batch culture for biopharmaceutical use. J. Chem. Technol. Biotechnol. 79, 57–62.

    Article  CAS  Google Scholar 

  70. Stadler, J., Lemmens, R., and Nyhammar, T. (2004) Plasmid DNA purification. J. Gene Med. 6, S54–S66.

    Article  CAS  Google Scholar 

  71. Lee, A.L., Sagar, S. (1999), A method for large scale plasmid purification. WO 96/36706.

    Google Scholar 

  72. Schumacher, I., Freitag, R., and Hilbrig, F. (2002) Method for treating biomass for producing cell lysate containing plasmid DNA. WO 02/057446 A2.

    Google Scholar 

  73. Hebel, H., Ramakrishnan, S., Gonzales, H., Darneli, J. (2004) Devices and methods for biomaterial production. WO2004/108260

    Google Scholar 

  74. Voß, C., Schmidt, T., and Schleef, M. (2005) from Bulk to Delivery: Plasmid M, in manufacturing and Storage, DNA Pharmaceuticals: Formulation and Delivery in Gene Therapy, DNA Vaccination and Immunotherapy (Schleef, M., ed.), Wiley-VCH, Weinheim, pp. 23–42.

    Google Scholar 

  75. Colpan, M., Schorr, J., and Moritz, P. (1995) Process for producing endotoxin-free or endotoxin-poor nucleic acids and/or oligonucleotides for gene therapy. WO 95/21177.

    Google Scholar 

  76. Thatcher, D. R., Hitchcock, A. G., Hanak, J. A., and Varley, D. L. (1997) Method of plasmid DNA production and purification. WO 97/29190.

    Google Scholar 

  77. Bussey, L., Adamson, R., and Atchley, A. (1998) Methods for purifying nucleic acids. WO 98/05673.

    Google Scholar 

  78. Schorr, J., Moritz, P., and Schleef, M. (1999) Production of plasmid DNA in industrial quantities according to cGMP guidelines, in DNA Vaccines: Methods and Protocols (Lowrie, D. B., and Whalen, R. G., eds.) Humana, Totowa, NJ, pp. 11–21.

    Chapter  Google Scholar 

  79. Ferreira, G. N. M., Prazeres, D. M. F., Cabral, J. M. S., and Schleef, M. (2001) Plasmid manufacturing—an overview, in Plasmids for therapy and vaccination (Schleef, M., ed.), Wiley-VCH, Weinheim, pp. 193–236.

    Chapter  Google Scholar 

  80. Green, A. P. (1999) Purification of supercoiled plasmid, in DNA Vaccines: Methods and Protocols (Lowrie, D. B., and Whalen, R. G., eds.), Humana, Totowa, NJ, pp. 1–9.

    Chapter  Google Scholar 

  81. Lemmens, R., Olsson, U., Nyhammar, T., and Stadler, J. (2003) Supercoiled plasmid DNA: selective purification by thiophilic/aromatic adsorption. J. Chromatogr. B 784, 291–300.

    Article  CAS  Google Scholar 

  82. Strancar, A., Podgornik, A., Barut, M., and Necina, R. (2002) Short monolithic columns as stationary phases for biochromatography. Adv. Biochem. Eng. Biotechnol. 76, 49–85.

    PubMed  CAS  Google Scholar 

  83. EMEA (2008) Scientific guidelines for human medicinal products. www.emea.europa.eu/htms/human/humanguidelines/background.htm.

  84. World Health Organization expert committee on biological standardization (2007), 56th report, WHO technical series 941.

    Google Scholar 

  85. DeLeys, R. J., and Jackson, D. A. (1975) Dye titrations of covalently closed supercoiled DNA analysed by agarose gel electrophoresis. Biochem. Biophys. Res. Commun. 69, 446–454.

    Article  Google Scholar 

  86. Johnson, P. H., and Grossmann, L. I. (1977) Electrophoresis of DNA in agarose gels. Optimizing separations of conformational isomers of double- and single-stranded DNAs. Biochemistry 16, 4217–4225.

    Article  PubMed  CAS  Google Scholar 

  87. Meyers, J. A., Sanchez, D., Elwell, L. P., and Falkow, S. (1976) Simple agarose gel electrophoretic method for the identification and characterization of plasmid deoxyribonucleic acid. J. Bacteriol. 127, 1529–1537.

    PubMed  CAS  Google Scholar 

  88. Pulleyblank, D. E., and Morgan, A. R. (1975) The sense of naturally occurring superhelixes and the unwinding angle of intercalated ethidium. J. Mol. Biol. 91, 1–13.

    Article  PubMed  CAS  Google Scholar 

  89. Tse, Y. C., and Wang, J. C. (1980) E. coli and M. luteus DNA topoisomerase I can catalyze catenation or decatenation of double-stranded rings. Cell 22, 269–276.

    Article  PubMed  CAS  Google Scholar 

  90. Martin, R. (1996) Gel Electrophoresis: Nucleic Acids. Bios Scientific Publishers, London.

    Google Scholar 

  91. Sinden, R. R. (1994) DNA structure and function. Academic Press, San Diego, CA.

    Google Scholar 

  92. Oliver, S. G., and Ward, J. M. (1985) A dictionary of genetic engineering. Cambridge University Press, Cambridge.

    Google Scholar 

  93. Serwer, P., and Allen, J. A. (1984) Conformation of double-stranded DNA during agarose gel electrophoresis: Fractionation of linear and circular molecules with molecular weights between 3*106 and 25*106. Biochemistry 23, 922–927.

    Article  PubMed  CAS  Google Scholar 

  94. Garner, M. M., and Chrambach, A. (1992) Resolution of circular, nicked circular and linear DNA, 4 kb in length, by electrophoresis in polyacrylamide solutions. Electrophoresis 13, 176–178.

    Article  PubMed  CAS  Google Scholar 

  95. Courtney, B. C., Williams, K. C., Bing, Q. A., and Schlager, J. (1995) Capillary gel electrophoresis as a method to determine ligation efficiency. Anal. Biochem. 228, 281–286.

    Article  PubMed  CAS  Google Scholar 

  96. Nackerdien, Z., Morris, S., Choquette, S., Ramos, B., and Atha, D. (1996) Analysis of laser-induced plasmid DNA photolysis by capillary electrophoresis. J. Chromatogr. B 683, 91–96.

    Article  CAS  Google Scholar 

  97. Hammond, R. W., Oana, H., Schwinefus, J. J., Bonadio, J., Levy, R. J., and Morris, M. D. (1997) Capillary electrophoresis of supercoiled and linear DNA in dilute hydroxyethyl cellulose solution. Anal. Chem. 69, 1192–1196.

    Article  PubMed  CAS  Google Scholar 

  98. Schmidt, T., Friehs, K., and Flaschel, E. (1996). Rapid determination of plasmid copy number. J. Biotechnol. 49, 219–229.

    Article  PubMed  CAS  Google Scholar 

  99. Edelstein, M. L., Abedi, M. R., and Wixon, J. (2007) Gene therapy clinical trials worldwide to 2007—an update. J. Gene Med. 9, 833–842.

    Article  PubMed  Google Scholar 

  100. Script Report (1995) Vectors for gene therapy: Current status and future prospects. PJB Publications London, UK.

    Google Scholar 

  101. Baiker, A., Maercker, C., Piechaczek, C., Schmidt, S. B. A., Bode, J., Benham, C., and Lipps, H. J. (2000) Mitotic stability of an episomal vector containing a human scaffold/matrix-attached region is provided by association with nuclear matrix. Nat. Cell Biol. 2, 182–184.

    Article  PubMed  CAS  Google Scholar 

  102. Lipps, H. J., Jenke, A. C. W., Nehlsen, K., Scinteie, M. F., Stehle, I. M., and Bode, J. (2003) Chromosome-based vectors for gene therapy. Gene 304, 23–33.

    Article  PubMed  CAS  Google Scholar 

  103. Schaarschmidt, D., Baltin, J., Stehle, I. M., Lipps, H. J., and Knipers, R. (2004) An episomal mammalian replicon: sequence-independent binding of the origin recognition complex. EMBO J. 23, 191–201.

    Article  PubMed  CAS  Google Scholar 

  104. Nehlsen, K., Broll, S., and Bode, J. (2006) Replicating minicircles: generation of nonviral episomes for the efficient modification of dividing cells. Gene Ther. Mol. Biol. 10, 233–244.

    Google Scholar 

  105. Chen, Z. Y., He, C. Y., and Kay, M. A. (2005) Improved production and purification pf minicircle DNA vector free of plasmid bacterial sequences and capable of persistent transgene expression in vivo. Hum. Gene Ther. 16, 126–131.

    Article  PubMed  CAS  Google Scholar 

  106. Jacobs, F., Snoeys, J., Feng, Y., Van Craeyveld, E., Lievens, J., Armentano, D., Cheng, S. H., and De Geest, B. (2008) Direct comparison of hepatocyte-specific expression cassettes following adenoviral and nonviral hydrodynamic gene transfer. Gene Ther. 15, 594–603.

    Article  PubMed  CAS  Google Scholar 

  107. Walther W, Siegel R, Kobelt D, Knösel T, Dietel M, Bembenek A, Aumann J, Schleef M, Baier R Stein U, Schlag PM. (2008) Nonviral intratumoral jet-injection gene transfer in metastatic melanoma and breast cancer: results of phase I clinical trial (in press).

    Google Scholar 

  108. Blaesen, M., Friehs, K., and Flaschel, E. (2007) Recycling of bacterial biomass in a process of L-threonine production by means of a recombinant strain of Escherichia coli. J. Biol. 132, 431–437.

    CAS  Google Scholar 

  109. Chen, Z., and Ruffner, D. (1998) Compositions and methods for rapid isolation of plasmid DNA. WO 98/16653.

    Google Scholar 

  110. Murphy, J. C., Wibbenmeyer, J. A., Fax, G. E., and Willson, R. C. (1999) Purification of plasmid DNA using selective precipitation by compaction agents. Nature Biotchnol. 17, 822–823.

    Article  CAS  Google Scholar 

  111. Southern, E. M. (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98, 503–517.

    Article  PubMed  CAS  Google Scholar 

  112. Smith, G. J., Helf, M., Nesbet, C., Betita, H. A., Meek, J., and Ferre, F. (1999) Fast and accurate method for quantitating E. coli host-cell DNA contamination in plasmid DNA preparations. BioTechniques 26, 518–526.

    PubMed  CAS  Google Scholar 

  113. Hyde, S. C., Pringle, I.A., Abdullah, S., Lawton, A.E., Davies, L.A., Varathalingam, A., Nunez-Alonso, G., Green, A.-M., Bazzani, R. P., Sumner-Jones, S. G., Chan, M., Li, H., Yew, N. S., Cheng, S. H., Boyd, A. C., Davies, J. C., Griesenbach, U., Porteus, D. J., Sheppard, D. N., Munkonge, F. M., Alton, E. W. F. W., and Gill D. R. (2008) CpG-free plasmids confer reduced inflammation and sustained pulmonary gene expression. Nature Biotechnol. (in press).

    Google Scholar 

  114. Levy, M. S., Collins, I. J., Tsai, J. T., Shamlou, P. A., Ward, J. M., and Dunnill, P. (2000) Removal of contaminant nucleic acids by nitrocellulose filtration during pharmaceutical-grade plasmid DNA processing. J. Biotech. 76, 197–205.

    Article  CAS  Google Scholar 

  115. Gonin, P., and Gaillard, C. (2004) Gene transfer vector biodistribution: pivotal safety studies in clinical gene therapy development. Gene Ther. 11, 98–108.

    Article  Google Scholar 

  116. Walther, W., Minow, T., Martin, R., Fichtner, I., Schlag, P. M., and Stein, U. (2006) Uptake, biodistribution, and time course of naked plasmid DNA trafficking after intratumoral in vivo jet injection. Hum. Gene Ther. 17, 611–624.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the German Federal Ministry of Education and Research (BMBF) for grants BioChancePLUS (0313749) and Nano-4-Life (13N9063), the research team of PlasmidFactory, Bielefeld, Germany for contributing to the work and the whole manufacturing team of PlasmidFactory for their discussion. We also thank M. Schmeer and our partners within CLINIGEN (FP6) for critical discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Schleef .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Schleef, M., Blaesen, M. (2009). Production of Plasmid DNA as Pharmaceutical. In: Walther, W., Stein, U. (eds) Gene Therapy of Cancer. Methods in Molecular Biology™, vol 542. Humana Press. https://doi.org/10.1007/978-1-59745-561-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-561-9_25

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-85-5

  • Online ISBN: 978-1-59745-561-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics