Skip to main content

Using In Vivo Biopanning for the Development of Radiation-Guided Drug Delivery Systems

  • Protocol
  • First Online:
Gene Therapy of Cancer

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 542))

Summary

This chapter illustrates our protocol for in vivo biopanning using T7 bacteriophage libraries for the purpose of selecting recombinant peptides for the tumor-specific delivery of radiosensitizers to radiation-inducible antigens within tumor neovasculature. Our goal is to discover peptides binding within tumor vascular endothelium of irradiated tumors. We have previously demonstrated that tumor irradiation increases the spectrum of antigenic targets for drug delivery. To identify candidate peptides with the ability to bind radiation-induced antigens, we inject the phage peptide library intravenously into mice bearing irradiated GL261 and Lewis lung carcinoma (LLC) hind limb tumors. Phage are recovered from excised tumors, amplified, and readministered to mouse-bearing tumors for six total rounds. At least 50 bacterial colonies are selected from each of the tumor types, and prioritized. This prioritization is based on their relative concentrations in tumor versus normal tissues, and then assessment of dominant phage present in both tumor types. These phage are amplified, and the gene sequences determined to deduce the recombinant peptide product. Further prioritization is performed by fluorescence labeling of the selected phage, and injection into irradiated and mock-irradiated tumor-bearing mice for evaluation of in vivo targeting of the candidate phage/peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Geng, L., J. Tan, et al. (2004). “A specific antagonist of the p110delta catalytic component of phosphatidylinositol 3'-kinase, IC486068, enhances radiation-induced tumor vascular destruction.” Cancer Res 64(14): 4893–9.

    Article  PubMed  CAS  Google Scholar 

  2. Schueneman, A. J., E. Himmelfarb, et al. (2003). “SU11248 maintenance therapy prevents tumor regrowth after fractionated irradiation of murine tumor models.” Cancer Res 63(14): 4009–16.

    PubMed  CAS  Google Scholar 

  3. Han, Z., A. Fu, et al. (2008). “Noninvasive assessment of cancer response to therapy.” Nat Med 14(3): 343–9.

    Article  PubMed  CAS  Google Scholar 

  4. Duffy, A., J. Kortmansky, et al. (2008). “A phase I study of erlotinib in combination with gemcitabine and radiation in locally advanced, non-operable pancreatic adenocarcinoma.” Ann Oncol 19(1): 86–91.

    Article  PubMed  CAS  Google Scholar 

  5. Iannitti, D., T. Dipetrillo, et al. (2005). “Erlotinib and chemoradiation followed by maintenance erlotinib for locally advanced pancreatic cancer: a phase I study.” Am J Clin Oncol 28(6): 570–5.

    Article  PubMed  CAS  Google Scholar 

  6. Krishnan, S., P. D. Brown, et al. (2006). “Phase I trial of erlotinib with radiation therapy in patients with glioblastoma multiforme: results of North Central Cancer Treatment Group protocol N0177.” Int J Radiat Oncol Biol Phys 65(4): 1192–9.

    Article  PubMed  CAS  Google Scholar 

  7. Camphausen, K., W. Burgan, et al. (2004). “Enhanced radiation-induced cell killing and prolongation of gammaH2AX foci expression by the histone deacetylase inhibitor MS-275.” Cancer Res 64(1): 316–21.

    Article  PubMed  CAS  Google Scholar 

  8. Camphausen, K. and P. J. Tofilon (2007). “Inhibition of histone deacetylation: a strategy for tumor radiosensitization.” J Clin Oncol 25(26): 4051–6.

    Article  PubMed  CAS  Google Scholar 

  9. Cuneo, K. C., A. Fu, et al. (2007). “Histone deacetylase inhibitor NVP-LAQ824 sensitizes human nonsmall cell lung cancer to the cytotoxic effects of ionizing radiation.” Anticancer Drugs 18(7): 793–800.

    Article  PubMed  CAS  Google Scholar 

  10. Geng, L., K. C. Cuneo, et al. (2006). “Histone deacetylase (HDAC) inhibitor LBH589 increases duration of gamma-H2AX foci and confines HDAC4 to the cytoplasm in irradiated non-small cell lung cancer.” Cancer Res 66(23): 11298–304.

    Article  PubMed  CAS  Google Scholar 

  11. Jaboin, J., J. Wild, et al. (2002). “MS-27–275, an inhibitor of histone deacetylase, has marked in vitro and in vivo antitumor activity against pediatric solid tumors.” Cancer Res 62(21): 6108–15.

    PubMed  CAS  Google Scholar 

  12. Qian, D. Z., Y. F. Wei, et al. (2007). “Antitumor activity of the histone deacetylase inhibitor MS-275 in prostate cancer models.” Prostate 67(11): 1182–93.

    Article  PubMed  CAS  Google Scholar 

  13. Colletier, P. J., F. Ashoori, et al. (2000). “Adenoviral-mediated p53 transgene expression sensitizes both wild-type and null p53 prostate cancer cells in vitro to radiation.” Int J Radiat Oncol Biol Phys 48(5): 1507–12.

    Article  PubMed  CAS  Google Scholar 

  14. D'Avenia, P., A. Porrello, et al. (2006). “Tp53-gene transfer induces hypersensitivity to low doses of X-rays in glioblastoma cells: a strategy to convert a radio-resistant phenotype into a radiosensitive one.” Cancer Lett 231(1): 102–12.

    Article  PubMed  Google Scholar 

  15. Pirollo, K. F., Z. Hao, et al. (1997). “p53 mediated sensitization of squamous cell carcinoma of the head and neck to radiotherapy.” Oncogene 14(14): 1735–46.

    Article  PubMed  CAS  Google Scholar 

  16. Atencio, I. A., M. Grace, et al. (2006). “Biological activities of a recombinant adenovirus p53 (SCH 58500) administered by hepatic arterial infusion in a Phase 1 colorectal cancer trial.” Cancer Gene Ther 13(2): 169–81.

    Article  PubMed  CAS  Google Scholar 

  17. Fujiwara, T., N. Tanaka, et al. (2006). “Multicenter phase I study of repeated intratumoral delivery of adenoviral p53 in patients with advanced non-small-cell lung cancer.” J Clin Oncol 24(11): 1689–99.

    Article  PubMed  CAS  Google Scholar 

  18. Shimada, H., H. Matsubara, et al. (2006). “Phase I/II adenoviral p53 gene therapy for chemoradiation resistant advanced esophageal squamous cell carcinoma.” Cancer Sci 97(6): 554–61.

    Article  PubMed  CAS  Google Scholar 

  19. Tolcher, A. W., D. Hao, et al. (2006). “Phase I, pharmacokinetic, and pharmacodynamic study of intravenously administered Ad5CMV-p53, an adenoviral vector containing the wild-type p53 gene, in patients with advanced cancer.” J Clin Oncol 24(13): 2052–8.

    Article  PubMed  CAS  Google Scholar 

  20. Swisher, S. G., J. A. Ajani, et al. (2003). “Long-term outcome of phase II trial evaluating chemotherapy, chemoradiotherapy, and surgery for locoregionally advanced esophageal cancer.” Int J Radiat Oncol Biol Phys 57(1): 120–7.

    Article  PubMed  Google Scholar 

  21. Cook, T., Z. Wang, et al. (2004). “Nitric oxide and ionizing radiation synergistically promote apoptosis and growth inhibition of cancer by activating p53.” Cancer Res 64(21): 8015–21.

    Article  PubMed  CAS  Google Scholar 

  22. Hildebrandt, G., A. Radlingmayr, et al. (2003). “Low-dose radiotherapy (LD-RT) and the modulation of iNOS expression in adjuvant-induced arthritis in rats.” Int J Radiat Biol 79(12): 993–1001.

    Article  PubMed  CAS  Google Scholar 

  23. Wang, Z., T. Cook, et al. (2004). “Adenoviral gene transfer of the human inducible nitric oxide synthase gene enhances the radiation response of human colorectal cancer associated with alterations in tumor vascularity.” Cancer Res 64(4): 1386–95.

    Article  PubMed  CAS  Google Scholar 

  24. Freeman, S. and J. M. Gardiner (1996). “Acyclic nucleosides as antiviral compounds.” Mol Biotechnol 5(2): 125–37.

    Article  PubMed  CAS  Google Scholar 

  25. Germano, I. M., J. Fable, et al. (2003). “Adenovirus/herpes simplex-thymidine kinase/ganciclovir complex: preliminary results of a phase I trial in patients with recurrent malignant gliomas.” J Neurooncol 65(3): 279–89.

    Article  PubMed  Google Scholar 

  26. Klatzmann, D., C. A. Valery, et al. (1998). “A phase I/II study of herpes simplex virus type 1 thymidine kinase “suicide” gene therapy for recurrent glioblastoma. Study Group on Gene Therapy for Glioblastoma.” Hum Gene Ther 9(17): 2595–604.

    Article  PubMed  CAS  Google Scholar 

  27. Rainov, N. G. (2000). “A phase III clinical evaluation of herpes simplex virus type 1 thymidine kinase and ganciclovir gene therapy as an adjuvant to surgical resection and radiation in adults with previously untreated glioblastoma multiforme.” Hum Gene Ther 11(17): 2389–401.

    Article  PubMed  CAS  Google Scholar 

  28. Freytag, S. O., H. Stricker, et al. (2003). “Phase I study of replication-competent adenovirus-mediated double-suicide gene therapy in combination with conventional-dose three-dimensional conformal radiation therapy for the treatment of newly diagnosed, intermediate- to high-risk prostate cancer.” Cancer Res 63(21): 7497–506.

    PubMed  CAS  Google Scholar 

  29. Chen, Y., T. DeWeese, et al. (2001). “CV706, a prostate cancer-specific adenovirus variant, in combination with radiotherapy produces synergistic antitumor efficacy without increasing toxicity.” Cancer Res 61(14): 5453–60.

    PubMed  CAS  Google Scholar 

  30. Dilley, J., S. Reddy, et al. (2005). “Oncolytic adenovirus CG7870 in combination with radiation demonstrates synergistic enhancements of antitumor efficacy without loss of specificity.” Cancer Gene Ther 12(8): 715–22.

    Article  PubMed  CAS  Google Scholar 

  31. DeWeese, T. L., H. van der Poel, et al. (2001). “A phase I trial of CV706, a replication-competent, PSA selective oncolytic adenovirus, for the treatment of locally recurrent prostate cancer following radiation therapy.” Cancer Res 61(20): 7464–72.

    PubMed  CAS  Google Scholar 

  32. Small, E. J., M. A. Carducci, et al. (2006). “A phase I trial of intravenous CG7870, a replication-selective, prostate-specific antigen-targeted oncolytic adenovirus, for the treatment of hormone-refractory, metastatic prostate cancer.” Mol Ther 14(1): 107–17.

    Article  PubMed  CAS  Google Scholar 

  33. Hallahan, D. E. (1996). “Introduction.” Semin Radiat Oncol 6(4): 243–4.

    Article  PubMed  Google Scholar 

  34. Hallahan, D. E., M. J. Staba-Hogan, et al. (1998). “X-ray-induced P-selectin localization to the lumen of tumor blood vessels.” Cancer Res 58(22): 5216–20.

    PubMed  CAS  Google Scholar 

  35. Hallahan, D., E. T. Clark, et al. (1995). “E-selectin gene induction by ionizing radiation is independent of cytokine induction.” Biochem Biophys Res Commun 217(3): 784–95.

    Article  PubMed  CAS  Google Scholar 

  36. Hallahan, D. E. (1996). “Radiation-mediated gene expression in the pathogenesis of the clinical radiation response.” Semin Radiat Oncol 6(4): 250–67.

    Article  PubMed  Google Scholar 

  37. Hallahan, D. E., A. Y. Chen, et al. (1999). “Drug-radiation interactions in tumor blood vessels.” Oncology (Williston Park) 13(10 Suppl 5): 71–7.

    CAS  Google Scholar 

  38. Arap, W., R. Pasqualini, et al. (1998). “Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model.” Science 279(5349): 377–80.

    Article  PubMed  CAS  Google Scholar 

  39. Rajotte, D. and E. Ruoslahti (1999). “Membrane dipeptidase is the receptor for a lung-targeting peptide identified by in vivo phage display.” J Biol Chem 274(17): 11593–8.

    Article  PubMed  CAS  Google Scholar 

  40. Hallahan, D., L. Geng, et al. (2003). “Integrin-mediated targeting of drug delivery to irradiated tumor blood vessels.” Cancer Cell 3: 63–74.

    Article  PubMed  CAS  Google Scholar 

  41. Pasqualini, R. and E. Ruoslahti (1996). “Organ targeting in vivo using phage display peptide libraries.” Nature 380(6572): 364–6.

    Article  PubMed  CAS  Google Scholar 

  42. Smith, G. P. and V. A. Petrenko (1997). “Phage Display.” Chem Rev 97(2): 391–410.

    Article  PubMed  CAS  Google Scholar 

  43. Staba, M. J., T. J. Wickham, et al. (2000). “Modifications of the fiber in adenovirus vectors increase tropism for malignant glioma models.” Cancer Gene Ther 7(1): 13–9.

    Article  PubMed  CAS  Google Scholar 

  44. Hariri, G., Y. Zhang, et al. (2008). “Radiation-guided P-selectin targeted antibody to lung cancer.” Ann Biomed Eng (in press).

    Google Scholar 

  45. Geng, L., E. Donnelly, et al. (2001). “Inhibition of vascular endothelial growth factor receptor signaling leads to reversal of tumor resistance to radiotherapy.” Cancer Res 61(6): 2413–9.

    PubMed  CAS  Google Scholar 

  46. Lu, B., L. Geng, et al. (2004). “Broad spectrum receptor tyrosine kinase inhibitor, SU6668, sensitizes radiation via targeting survival pathway of vascular endothelium.” Int J Radiat Oncol Biol Phys 58(3): 844–50.

    Article  PubMed  CAS  Google Scholar 

  47. Hallahan, D., J. Kuchibhotla, et al. (1996). “Cell adhesion molecules mediate radiation-induced leukocyte adhesion to the vascular endothelium.” Cancer Res 56(22): 5150–5.

    PubMed  CAS  Google Scholar 

  48. Hallahan, D. E., L. Geng, et al. (2001). “Targeting drug delivery to radiation-induced neoantigens in tumor microvasculature.” J Control Rel 74(1–3): 183–91.

    Article  CAS  Google Scholar 

  49. Mehta, D. and A. B. Malik (2006). “Signaling mechanisms regulating endothelial permeability.” Physiol Rev 86(1): 279–367.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Errki Ruoslahti (Burnham Institute for Medical Research, La Jolla, CA) for the peptide phage libraries, and Allie Fu, Ling Geng, Helina Onishko for their technical assistance. This work was supported by the US National Cancer Institutes grant R01-CA125757, the Ingram Charitable Fund, and the Vanderbilt–Ingram Cancer Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis E. Hallahan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Jaboin, J., Han, Z., Hallahan, D. (2009). Using In Vivo Biopanning for the Development of Radiation-Guided Drug Delivery Systems. In: Walther, W., Stein, U. (eds) Gene Therapy of Cancer. Methods in Molecular Biology™, vol 542. Humana Press. https://doi.org/10.1007/978-1-59745-561-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-561-9_15

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-85-5

  • Online ISBN: 978-1-59745-561-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics