Skip to main content

Riboswitch Conformations Revealed by Small-Angle X-Ray Scattering

  • Protocol
  • First Online:
Riboswitches

Part of the book series: Methods in Molecular Biology ((MIMB,volume 540))

Summary

Riboswitches are functional RNA molecules that control gene expression through conformational changes in response to small-molecule ligand binding. In addition, riboswitch 3D structure, like that of other RNA molecules, is dependent on cation–RNA interactions as the RNA backbone is highly negatively charged. Here, we show how small-angle X-ray scattering (SAXS) can be used to probe RNA conformations as a function of ligand and ion concentration. In a recent study of a glycine-binding tandem aptamer from Vibrio cholerae, we have used SAXS data and thermodynamic modeling to investigate how Mg2+-dependent folding and glycine binding are energetically coupled. In addition, we have employed ab initio shape reconstruction algorithms to obtain low-resolution models of the riboswitch structure from SAXS data under different solution conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Draper, D.E., Grilley, D., and Soto, A.M. (2005) Ions and RNA folding. Annu. Rev. Biophys. Biomol. Struct. 34, 221–243.

    Article  PubMed  CAS  Google Scholar 

  2. Woodson, S.A. (2005) Metal ions and RNA folding: a highly charged topic with a dynamic future. Curr. Opin. Chem. Biol. 9, 104–109.

    Article  PubMed  CAS  Google Scholar 

  3. Sclavi, B., Woodson, S., Sullivan, M., Chance, M., and Brenowitz, M. (1998) Following the folding of RNA with time-resolved synchrotron X-ray footprinting. Methods Enzymol. 295, 379–402.

    Article  PubMed  CAS  Google Scholar 

  4. Brenowitz, M., Chance, M.R., Dhavan, G., and Takamoto, K. (2002) Probing the structural dynamics of nucleic acids by quantitative time-resolved and equilibrium hydroxyl radical “footprinting”. Curr. Opin. Struct. Biol. 12, 648–653.

    Article  PubMed  CAS  Google Scholar 

  5. Furtig, B., Buck, J., Manoharan, V., Bermel, W.,Jaschke, A., Wenter, P., Pitsch, S., and Schwalbe, H. (2007) Time-resolved NMR studies of RNA folding. Biopolymers 86, 360–383.

    Article  PubMed  Google Scholar 

  6. Walter, N.G. (2001) Structural dynamics of catalytic RNA highlighted by fluorescence resonance energy transfer. Methods 25(1), 19–30.

    Article  PubMed  CAS  Google Scholar 

  7. Kim, H.D., Nienhaus, G.U., Ha, T., Orr, J.W., Williamson, J.R., and Chu, S. (2002) Mg2+ dependent conformational change of RNA studied by fluorescence correlation and FRET on immobilized single molecules. Proc. Natl Acad. Sci. U. S. A. 99(7), 4284–4289.

    Article  PubMed  CAS  Google Scholar 

  8. Russell, R., Millett, I.S., Doniach, S., and Herschlag, D. (2000) Small angle X-ray scattering reveals a compact intermediate in RNA folding. Nat. Struct. Biol. 7(5), 367–370.

    Article  PubMed  CAS  Google Scholar 

  9. Russell, R., Millett, I.S., Tate, M.W., Kwok, L.W., Nakatani, B., Gruner, S.M., Mochrie, S.G., Pande, V., Doniach, S., Herschlag, D., and Pollack, L. (2002) Rapid compaction during RNA folding. Proc. Natl Acad. Sci. U. S. A. 99(7), 4266–4271.

    Article  PubMed  CAS  Google Scholar 

  10. Takamoto, K., Das, R., He, Q., Doniach, S., Brenowitz, M., Herschlag, D., and Chance, M.R. (2004) Principles of RNA compaction: insights from the equilibrium folding pathway of the P4-P6 RNA domain in monovalent cations. J. Mol. Biol. 343, 1195–1206.

    Article  PubMed  CAS  Google Scholar 

  11. Russell, R., Zhuang, X., Babcock, H.P., Millett,I.S., Doniach, S., Chu, S., and Herschlag, S. (2002) Exploring the folding landscape of a structured RNA. Proc. Natl Acad. Sci. U. S. A. 99(1), 155–160.

    Article  PubMed  CAS  Google Scholar 

  12. Fang, X.-W., Littrell, K., Yang, X., Henderson, S.J., Seifert, S., Thiyagarajan, P., Pan, T., and Sosnick, T.R. (2000) Mg2+-dependent compaction and folding of yeast tRNA and the catalytic domain of the B. subtilis RNase P RNA determined by small-angle X-ray scattering. Biochemistry 39, 11107–11113.

    Article  PubMed  CAS  Google Scholar 

  13. Fang, X.-W., Golden, B.L., Littrell, K., Shelton, V., Thiyagarajan, P., Pan, T., and Sosnick, T.R. (2001) The thermodynamic origin of a thermophilic ribozyme. Proc. Natl Acad. Sci. U. S. A. 98(8), 4355–4360.

    Article  PubMed  CAS  Google Scholar 

  14. Chauhan, S., Caliskan, G., Briber, R.M., Perez-Salas, U., Rangan, P., Thirumalai, D., and Woodson, S.A. (2005) RNA tertiary interactions mediate native collapse of a bacterial group I ribozyme. J. Mol. Biol. 353(5), 1199–1209.

    Article  PubMed  CAS  Google Scholar 

  15. Kwok, L.W., Shcherbakova, I., Lamb, J.S., Park, H.Y., Andresen, K., Smith, H., Brenowitz,M., and Pollack, L. (2006) Concordant exploration of the kinetics of RNA folding from global and local perspectives. J. Mol. Biol. 355(2), 282–293.

    Article  PubMed  CAS  Google Scholar 

  16. Mandal, M. and Breaker, R.R. (2004) Gene regulation by riboswitches. Nat. Rev. Mol. Cell. Biol. 5, 451–463.

    Article  PubMed  CAS  Google Scholar 

  17. Winkler, W.C. and Breaker, R.R. (2005) Regulation of bacterial gene expression by riboswitches. Annu. Rev. Microbiol. 59, 487–517.

    Article  PubMed  CAS  Google Scholar 

  18. Soukup, J.K. and Soukup, G.A. (2004) Riboswitches exert genetic control through metabolite-induced conformational change. Curr. Opin. Struct. Biol. 14, 344–349.

    Article  PubMed  CAS  Google Scholar 

  19. Vitreschak, A.G., Rodionov, D.A., Mironov, A.A., and Gelfand, M.S. (2004) Riboswitches: the oldest mechanism for the regulation of gene expression. Trends Genet. 20, 44–50.

    Article  PubMed  CAS  Google Scholar 

  20. Coppins, R.L., Hall, K.B., and Groisman, E.A. (2007) The intricate world of riboswitches. Curr. Opin. Microbiol. 10, 176–181.

    Article  PubMed  CAS  Google Scholar 

  21. Schwalbe, H., Buck, J., Furtig, B., Noeske, J.,and Wohnert, J. (2007) Structures of RNA switches: insight into molecular recognition and tertiary structure. Angew. Chem. Int. Ed. Engl. 46, 1212–1219.

    Article  PubMed  CAS  Google Scholar 

  22. Edwards, T.E., Klein, D.J., and Ferre-D’Amare, A.R. (2007) Riboswitches: small-molecule recognition by gene regulatory RNAs. Curr. Opin. Struct. Biol. 17, 273–279.

    Article  PubMed  CAS  Google Scholar 

  23. Mandal, M., Lee, M., Barrick, J.E., Weinberg, Z.,Emilsson, G.M., Ruzzo, W.L., and Breaker, R.R. (2004) A glycine-dependent riboswitch that uses cooperative binding to control gene expression. Science 306, 275–279.

    Article  PubMed  CAS  Google Scholar 

  24. Lipfert, J., Das, R., Chu, V.B., Kudaravalli, M., Boyd, N., Herschlag, D., and Doniach, S. (2007) Structural transitions and thermodynamics of a glycine-dependent riboswitch from Vibrio cholerae. J. Mol. Biol. 365, 1393–1406.

    Article  PubMed  CAS  Google Scholar 

  25. Chacon, P., Moran, F., Diaz, J.F., Pantos, E.,and Andreu, J.M. (1998) Low-resolution structures of proteins in solution retrieved from X-ray scattering with a genetic algorithm. Biophys. J. 74, 2760–2775.

    Article  PubMed  CAS  Google Scholar 

  26. Svergun, D.I. (1999) Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys. J. 76, 2879–2886.

    Article  PubMed  CAS  Google Scholar 

  27. Walther, D., Cohen, F.E., and Doniach, S. (2000) Reconstruction of low resolution three-dimensional density maps from one-dimensional small angle X-ray scattering data for biomolecules in solution. J. Appl. Cryst. 33, 350–363.

    Article  CAS  Google Scholar 

  28. Lipfert, J., Chu, V.B., Bai, Y., Herschlag, D., and Doniach, S. (2007) Low resolution models for nucleic acids from small-angle X-ray scattering with applications to electrostatic modeling. J. Appl. Cryst. 40, S229–S235.

    Article  CAS  Google Scholar 

  29. Hartmann, H.R., Bindereif, A., Schön, A., and Westhof, E. (2005) Handbook of RNA Biochemistry, Wiley-VCH, Weinheim.

    Book  Google Scholar 

  30. Lipfert, J., Millett, I.S., Seifert, S., and Doniach, S. (2006) A sample holder for small-angle X-ray scattering static and flow cell measurements. Rev. Sci. Inst. 77, 46108.

    Article  Google Scholar 

  31. Chu, V.B., Yu, B., Lipfert, J., Pande, V.S., Herschlag, D., and Doniach, S. (2008) Critical assessment of nucleic acid electrostatics via experimental and computational investigation of an unfolded state ensemble. J. Am. Chem. Soc. 130, 12334–12341

    Article  PubMed  Google Scholar 

  32. Bai, Y., Das, R., Millett, I.S., Herschlag, D., and Doniach, S. (2005) Probing counterions modulated repulsion and attraction between nucleic acid duplexes in solution. Proc. Natl Acad. Sci. U. S. A. 102(4), 1035–1040.

    Article  PubMed  CAS  Google Scholar 

  33. Huang, T.C., Toraya, H., Blanton, T.N., and Wu, Y. (1993) X-ray-powder diffraction analysis of silver behenate, a possible low-angle diffraction standard. J. Appl. Cyrst. 26, 180–184.

    Article  CAS  Google Scholar 

  34. Svergun, D.I. and Koch, M.H.J. (2003) Small-angle scattering studies of biological macromolecules in solution. Rep. Prog. Phys. 66, 1735–1782.

    Article  CAS  Google Scholar 

  35. Guinier, A. (1939) La diffraction des rayons X aux très petits angles: Application à l’étude de phénomènes ultramicroscopiques. Ann. Phys. (Paris), 12, 161–237.

    CAS  Google Scholar 

  36. Mylonas, E. and Svergun, D.I. (2007) Accuracy of molecular weight determination of proteins in solution by small-angle X-ray scattering. J. Appl. Cyrst. 40, S245–S249.

    Article  CAS  Google Scholar 

  37. Doniach, S. (2001) Changes in biomolecular conformations seen by small angle X-ray scattering. Chem. Rev. 101, 1763–1778.

    Article  PubMed  CAS  Google Scholar 

  38. Henry, E.R. and Hofrichter, J. (1992) Singular value decomposition: application to analysis of experimental data. Methods Enzymol. 210, 129–192.

    Article  CAS  Google Scholar 

  39. Segel, D.J., Fink, A.L., Hodgson, K.O., and Doniach, S. (1998) Protein denaturation: a small-angle X-ray scattering study of the ensemble of unfolded states of cytochrome c. Biochemistry 37, 12443–12451.

    Article  PubMed  CAS  Google Scholar 

  40. Lipfert, J., Columbus, L., Chu, V.B., and Doniach, S. (2007) Analysis of small-angle X-ray scattering data of protein–detergent complexes by singular value decomposition.J. Appl. Cryst. 40, S235–S239.

    Article  CAS  Google Scholar 

  41. Dantas, G., Watters, A.L., Lunde, B., Eletr, Z., Isern, N., Lipfert, J., Doniach, S., Kuhlman, B.,Stoddard, B.L., Varani, G., and Baker, D. (2006) Mistranslation fragment of an in silico designed novel-fold protein forms and exceptionally stable symmetric homodimer with a high-affinity interface. J. Mol. Biol. 362, 1004–1024.

    Article  PubMed  CAS  Google Scholar 

  42. Svergun, D.I. (1992) Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J. Appl. Cryst. 25, 495–503.

    Article  Google Scholar 

  43. Lipfert, J. and Doniach, S. (2007) Small-angle X-ray scattering from RNA, proteins, and protein complexes. Ann. Rev. Biophys. Biomol. Struct. 36, 307–327.

    Article  CAS  Google Scholar 

  44. Hyeon, C., Dima, R.I., and Thirumalai, D. (2006) Size, shape, and flexibility of RNA structures. J. Chem. Phys. 125(19), 194905.

    Article  PubMed  Google Scholar 

  45. Kozin, M.B. and Svergun, D.I. (2001) Automated matching of high- and low-resolution structural models. J. Appl. Cryst. 34, 33–41.

    Article  CAS  Google Scholar 

  46. Wriggers, W., Milligan, R.A., and McCammon, J.A. (1999) Situs: a package for docking crystal structures into low-resolution maps from electron microscopy. J. Struct. Biol. 125, 185–195.

    Article  PubMed  CAS  Google Scholar 

  47. Wriggers, W. and Chacón, P. (2001) Using situs for the registration of protein structures with low-resolution bead models from X-ray solution scattering. J. Appl. Cryst. 34, 773–776.

    Article  CAS  Google Scholar 

  48. Misra, V.K. and Draper, D.E. (2000) Mg2+ binding to tRNA revisited: the nonlinear Poisson–Boltzmann model. J. Mol. Biol. 299, 813–825.

    Article  PubMed  CAS  Google Scholar 

  49. Grilley, D., Soto, A.M., and Draper, D.E. (2006) Mg2+ RNA interaction free energies and their relationship to the folding of RNA tertiary structures. Proc. Natl Acad. Sci. U. S. A. 103, 14003–14008.

    Article  PubMed  CAS  Google Scholar 

  50. Chu, V.B., Bai, Y., Lipfert, J., Herschlag, D., and Doniach, S. (2007) Evaluation of ion binding to DNA duplexes using a size-modified Poisson–Boltzmann theory. Biophys. J. 93(9), 3202–3209.

    Article  PubMed  CAS  Google Scholar 

  51. Bai, Y., Travers, K., Chu, V.C., Lipfert, J., Doniach, S., and Herschlag, D. (2007) Quantitative and comprehensive decomposition of the ion atmosphere around nucleic acids. J. Am. Chem. Soc. 129, 12427–12438.

    Google Scholar 

  52. Baker, N.A., Sept, D., Joseph, S., Holst, M.J., and McCammon, J.A. (2001) Electrostatics of nanosystems: applications to microtubules and the ribosome. Proc. Natl Acad. Sci. U. S. A. 98, 10037–10041.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Yu Bai, Rhiju Das, Nathan Boyd, Adelene Y.-L. Sim, Mona Ali, Vincent B. Chu, Rebecca Fenn, Sönke Seifert, and the members of the Herschlag group for useful discussions and for help with data collection and sample preparation. This research was supported by the National Institutes of Health Grant PO1 GM0066275. Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Doniach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lipfert, J., Herschlag, D., Doniach, S. (2009). Riboswitch Conformations Revealed by Small-Angle X-Ray Scattering. In: Serganov, A. (eds) Riboswitches. Methods in Molecular Biology, vol 540. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-558-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-558-9_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-934115-88-6

  • Online ISBN: 978-1-59745-558-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics