Determining Structures of RNA Aptamers and Riboswitches by X-Ray Crystallography

  • Andrea L. Edwards
  • Andrew D. Garst
  • Robert T. Batey
Part of the Methods in Molecular Biology™ book series (MIMB, volume 535)


Structural biology plays a central role in gaining a full understanding of the myriad roles of RNA in biology. In recent years, innovative approaches in RNA purification and crystallographic methods have lead to the visualization of an increasing number of unique structures, providing new insights into its function at the atomic level. This article presents general protocols which have streamlined the process of obtaining a homogeneous sample of properly folded and active RNA in high concentrations that crystallizes well in the presence of a suitable heavy-atom for phasing. Of particular importance are approaches toward RNA crystallography that include exploring “construct space” as opposed to “condition space”. Moreover, development of a highly flexible method for experimentally phasing RNA crystals may open the door to a relatively simple means of solving these structures.

Andrea L. Edwards and Andrew D. Garst contributed equally to this work.

Key words

RNA purification RNA synthesis riboswitch aptamer RNA crystallography heavy-atom derivative 



The contents of this work comprise much of the collected wisdom of a number of colleagues and members of the Batey laboratory. In particular, we would like to thank Jeffrey Kieft of the C.U. Health Sciences Center who has been instrumental in developing many of the ideas presented in this article. This work was made possible by a Research Scholar Grant from the American Cancer Society and support from the National Institutes of Health to R.T.B.


  1. 1.
    Pley, H.W., Flaherty, K.M. and McKay, D.B. (1994) Three-dimensional structure of a hammerhead ribozyme. Nature 372, 68–74.PubMedCrossRefGoogle Scholar
  2. 2.
    Scott, W.G., Finch, J.T. and Klug, A. (1995) The crystal structure of an all-RNA hammerhead ribozyme: a proposed mechanism for RNA catalytic cleavage. Cell 81, 991–1002.PubMedCrossRefGoogle Scholar
  3. 3.
    Cate, J.H., Gooding, A.R., Podell, E., Zhou, K., Golden, B.L., Kundrot, C.E., Cech, T.R. and Doudna, J.A. (1996) Crystal structure of a group I ribozyme domain: principles of RNA packing. Science 273, 1678–1685.PubMedCrossRefGoogle Scholar
  4. 4.
    Cate, J.H., Gooding, A.R., Podell, E., Zhou, K., Golden, B.L., Szewczak, A.A., Kundrot, C.E., Cech, T.R. and Doudna, J.A. (1996) RNA tertiary structure mediation by adenosine platforms. Science 273, 1696–1699.PubMedCrossRefGoogle Scholar
  5. 5.
    Klein, D.J., Schmeing, T.M., Moore, P.B. and Steitz, T.A. (2001) The kink-turn: a new RNA secondary structure motif. EMBO J. 20, 4214–4221.PubMedCrossRefGoogle Scholar
  6. 6.
    Kieft, J.S. and Batey, R.T. (2004) A general method for rapid and nondenaturing purification of RNAs. RNA 10, 988–995.PubMedCrossRefGoogle Scholar
  7. 7.
    Griffiths-Jones, S., Moxon, S., Marshall, M., Khanna, A., Eddy, S.R. and Bateman, A. (2005) Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res. 33, D121–124.PubMedCrossRefGoogle Scholar
  8. 8.
    Oubridge, C., Ito, N., Teo, C.H., Fearnley, I. and Nagai, K. (1995) Crystallisation of RNA-protein complexes. II. The application of protein engineering for crystallisation of the U1A protein-RNA complex. J. Mol. Biol. 249, 409–423.PubMedCrossRefGoogle Scholar
  9. 9.
    Price, S.R., Ito, N., Oubridge, C., Avis, J.M. and Nagai, K. (1995) Crystallization of RNA-protein complexes. I. Methods for the large-scale preparation of RNA suitable for crystallographic studies. J. Mol. Biol. 249, 398–408.PubMedCrossRefGoogle Scholar
  10. 10.
    Batey, R.T., Sagar, M.B. and Doudna, J.A. (2001) Structural and energetic analysis of RNA recognition by a universally conserved protein from the signal recognition particle. J. Mol. Biol. 307, 229–246.PubMedCrossRefGoogle Scholar
  11. 11.
    Scott, W.G., Finch, J.T., Grenfell, R., Fogg, J., Smith, T., Gait, M.J. and Klug, A. (1995) Rapid crystallization of chemically synthesized hammerhead RNAs using a double screening procedure. J. Mol. Biol. 250, 327–332.PubMedCrossRefGoogle Scholar
  12. 12.
    Ferre-D'Amare, A.R. and Doudna, J.A. (2000) Crystallization and structure determination of a hepatitis delta virus ribozyme: use of the RNA-binding protein U1A as a crystallization module. J. Mol. Biol. 295, 541–556.PubMedCrossRefGoogle Scholar
  13. 13.
    Gilbert, S.D., Montange, R.K., Stoddard, C.D. and Batey, R.T. (2006) Structural studies of the purine and SAM binding riboswitches. Cold Spring Harb Symp. Quant. Biol. 71, 259–268.PubMedCrossRefGoogle Scholar
  14. 14.
    Grundy, F.J. and Henkin, T.M. (1998) The S box regulon: a new global transcription termination control system for methionine and cysteine biosynthesis genes in gram-positive bacteria. Mol. Microbiol. 30, 737–749.PubMedCrossRefGoogle Scholar
  15. 15.
    Winkler, W.C., Nahvi, A., Sudarsan, N., Barrick, J.E. and Breaker, R.R. (2003) An mRNA structure that controls gene expression by binding S-adenosylmethionine. Nat. Struct. Biol. 10, 701–707.PubMedCrossRefGoogle Scholar
  16. 16.
    McPherson, A. (1999) Crystallization of Biological Macromolecules. Cold Spring Harbor Press, Cold Spring Harbor, NY.Google Scholar
  17. 17.
    Pley, H.W., Flaherty, K.M. and McKay, D.B. (1994) Model for an RNA tertiary interaction from the structure of an intermolecular complex between a GAAA tetraloop and an RNA helix. Nature 372, 111–113.PubMedCrossRefGoogle Scholar
  18. 18.
    Doherty, E.A., Batey, R.T., Masquida, B. and Doudna, J.A. (2001) A universal mode of helix packing in RNA. Nat. Struct. Biol. 8, 339–343.PubMedCrossRefGoogle Scholar
  19. 19.
    Nissen, P., Ippolito, J.A., Ban, N., Moore, P.B. and Steitz, T.A. (2001) RNA tertiary interactions in the large ribosomal subunit: the A-minor motif. Proc. Natl. Acad. Sci. U.S.A. 98, 4899–4903.PubMedCrossRefGoogle Scholar
  20. 20.
    Montange, R.K. and Batey, R.T. (2006) Structure of the S-adenosylmethionine riboswitch regulatory mRNA element. Nature 441, 1172–1175.PubMedCrossRefGoogle Scholar
  21. 21.
    Corbino, K.A., Barrick, J.E., Lim, J., Welz, R., Tucker, B.J., Puskarz, I., Mandal, M., Rudnick, N.D. and Breaker, R.R. (2005) Evidence for a second class of S-adenosylmethionine riboswitches and other regulatory RNA motifs in alpha-proteobacteria. Genome. Biol. 6, R70.PubMedCrossRefGoogle Scholar
  22. 22.
    Gilbert, S.D., Rambo, R.P., Van Tyne, D., and Batey, R.T. (2008) Structure of the SAM-II riboswitch bound to S-adenosylmethionine. Nat. Struct. Biol. 15, 177–182.Google Scholar
  23. 23.
    Baugh, C., Grate, D. and Wilson, C. (2000) 2.8 A crystal structure of the malachite green aptamer. J. Mol. Biol. 301, 117–128.PubMedCrossRefGoogle Scholar
  24. 24.
    Kieft, J.S., Zhou, K., Grech, A., Jubin, R. and Doudna, J.A. (2002) Crystal structure of an RNA tertiary domain essential to HCV IRES-mediated translation initiation. Nat. Struct. Biol. 9, 370–374.PubMedGoogle Scholar
  25. 25.
    Carrasco, N., Buzin, Y., Tyson, E., Halpert, E. and Huang, Z. (2004) Selenium derivatization and crystallization of DNA and RNA oligonucleotides for X-ray crystallography using multiple anomalous dispersion. Nucleic Acids Res. 32, 1638–1646.PubMedCrossRefGoogle Scholar
  26. 26.
    Hobartner, C., Rieder, R., Kreutz, C., Puffer, B., Lang, K., Polonskaia, A., Serganov, A. and Micura, R. (2005) Syntheses of RNAs with up to 100 nucleotides containing site-specific 2'-methylseleno labels for use in X-ray crystallography. J. Am. Chem. Soc. 127, 12035–12045.PubMedCrossRefGoogle Scholar
  27. 27.
    Golden, B.L. and Kundrot, C.E. (2003) RNA crystallization. J. Struct. Biol. 142, 98–107.PubMedCrossRefGoogle Scholar
  28. 28.
    Keel, A.Y., Rambo, R.P., Batey, R.T. and Kieft, J.S. (2007) A general strategy to solve the phase problem in RNA crystallography. Structure 15, 761–772.PubMedCrossRefGoogle Scholar
  29. 29.
    Ferre-D'Amare, A.R. and Doudna, J.A. (1996) Use of cis- and trans-ribozymes to remove 5' and 3' heterogeneities from milligrams of in vitro transcribed RNA. Nucleic Acids Res. 24, 977–978.PubMedCrossRefGoogle Scholar
  30. 30.
    Batey, R.T. and Kieft, J.S. (2007) Improved native affinity purification of RNA. RNA 13, 1384–1389.PubMedCrossRefGoogle Scholar
  31. 31.
    Grodberg, J. and Dunn, J.J. (1988) ompT encodes the Escherichia coli outer membrane protease that cleaves T7 RNA polymerase during purification. J. Bacteriol. 170, 1245–1253.PubMedGoogle Scholar
  32. 32.
    Zawadzki, V. and Gross, H.J. (1991) Rapid and simple purification of T7 RNA polymerase. Nucleic Acids Res. 19, 1948.PubMedCrossRefGoogle Scholar
  33. 33.
    Li, Y., Wang, E. and Wang, Y. (1999) A modified procedure for fast purification of T7 RNA polymerase. Protein. Expr. Purif. 16, 355–358.PubMedCrossRefGoogle Scholar
  34. 34.
    Ichetovkin, I.E., Abramochkin, G. and Shrader, T.E. (1997) Substrate recognition by the leucyl/phenylalanyl-tRNA-protein transferase. Conservation within the enzyme family and localization to the trypsin-resistant domain. J. Biol. Chem. 272, 33009–33014.PubMedCrossRefGoogle Scholar
  35. 35.
    Pleiss, J.A., Derrick, M.L. and Uhlenbeck, O.C. (1998) T7 RNA polymerase produces 5' end heterogeneity during in vitro transcription from certain templates. RNA 4, 1313–1317.PubMedCrossRefGoogle Scholar
  36. 36.
    Golden, B. L. (2007) Preparation and crystallization of RNA. Methods. Mol. Biol. 363, 239–257.PubMedCrossRefGoogle Scholar
  37. 37.
    Kim, I., McKenna, S.A., Viani Puglisi, E. and Puglisi, J.D. (2007) Rapid purification of RNAs using fast performance liquid chromatography (FPLC). RNA 13, 289–294.PubMedCrossRefGoogle Scholar
  38. 38.
    Bergfors, T. (2007) Screening and optimization methods for nonautomated crystallization laboratories. Methods Mol. Biol. 363, 131–151.PubMedCrossRefGoogle Scholar
  39. 39.
    McCarthy, T.J., Plog, M.A., Floy, S.A., Jansen, J.A., Soukup, J.K. and Soukup, G.A. (2005) Ligand requirements for glmS ribozyme self-cleavage. Chem. Biol. 12, 1221–1226.PubMedCrossRefGoogle Scholar
  40. 40.
    Roth, A., Nahvi, A., Lee, M., Jona, I. and Breaker, R.R. (2006) Characteristics of the glmS ribozyme suggest only structural roles for divalent metal ions. RNA 12, 607–619.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Andrea L. Edwards
    • 1
  • Andrew D. Garst
    • 1
  • Robert T. Batey
    • 1
  1. 1.Department of Chemistry and BiochemistryUniversity of ColoradoBoulderUSA

Personalised recommendations