Cell-Specific Aptamers for Targeted Therapies

  • Laura Cerchia
  • Paloma H. Giangrande
  • James O. McNamara
  • Vittorio de Franciscis
Part of the Methods in Molecular Biology™ book series (MIMB, volume 535)


Many signalling proteins involved in diverse functions such as cell growth and differentiation can act as oncogenes and cause cellular transformation. These molecules represent attractive targets for cancer diagnosis or therapy and therefore are subject to intensive investigation.

Aptamers are small, highly structured nucleic acid molecules, isolated from combinatorial libraries by a procedure termed SELEX. Aptamers bind to a target molecule by providing a limited number of specific contact points imbedded in a larger, defined three-dimensional structure. Recently, aptamers have been selected against whole living cells, opening a new path which presents three major advantages: (1) direct selection without prior purification of membrane-bound targets, (2) access to membrane proteins in their native conformation similar to the in vivo conditions and (3) identification of (new) targets related to a specific phenotype. The ability to raise aptamers against living cells opens some attractive possibilities for new therapeutic and delivery approaches. In this chapter, the most recent advances in the field will be reviewed together with detailed descriptions of the relevant experimental approaches.

Key words

Aptamer SELEX ret delivery siRNA 



This work was supported by the European Molecular Imaging Laboratory (EMIL) Network (LSHC-2004-503569) and by the MIUR-FIRB Grant (#RBIN04J4J7).

We wish to thank C.L. Esposito, B. Tavitian, F. Duconge and D. Libri for fruitful discussions.


  1. 1.
    Tuerk, C. and Gold, L. (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505–510.PubMedCrossRefGoogle Scholar
  2. 2.
    Ellington, A.D. and Szostak, J.W. (1990) In vitro selection of RNA molecules that bind specific ligands. Science 346, 818–822.Google Scholar
  3. 3.
    Bock, L.C., Griffin, L.C., Latham, J.A., Vermaas, E.H. and Toole, J.J. (1992) Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 355, 564–566.PubMedCrossRefGoogle Scholar
  4. 4.
    Osborne, S.E. and Ellington, A.D. (1997) Nucleic acid selection and the challenge of combinatorial chemistry. Chem. Rev. 97, 349–370.PubMedCrossRefGoogle Scholar
  5. 5.
    Ruckman, J., Green, L.S., Beeson, J., Waugh, S., Gillette, W.L., Henninger, D.D., Claesson-Welsh, L. and Janjic, N. (1998) 2'-Fluoropyrimidine RNA-based aptamers to the 165-amino acid form of vascular endothelial growth factor (VEGF165). Inhibition of receptor binding and VEGF-induced vascular permeability through interactions requiring the exon 7-encoded domain. J. Biol. Chem. 273, 20556–20567.PubMedCrossRefGoogle Scholar
  6. 6.
    Famulok, M. and Mayer, G. (2005). Intramers and aptamers: applications in protein-function analyses and potential for drug screening. ChemBioChem. 6, 19–26.PubMedCrossRefGoogle Scholar
  7. 7.
    Morris, K.N., Jensen, K.B, Julin, C.M., Weil, M., Gold, L. (1998) High affinity ligands from in vitro selection: complex targets. Proc. Natl. Acad. Sci. U.S.A. 95, 2902–2907.Google Scholar
  8. 8.
    Homann, M. and Goringer, H.U. (1999) Combinatorial selection of high affinity RNA ligands to live African trypanosomes. Nucleic Acids Res. 27, 2006–2014.PubMedCrossRefGoogle Scholar
  9. 9.
    Cerchia, L., Ducongé, F., Pestourie, C., Boulay, J., Aissouni, Y., Gombert, K., Tavitian, B, de Franciscis, V. and Libri, D. (2005) Neutralizing aptamers from whole-cell SELEX inhibit the RET receptor tyrosine kinase. PLoS Biol. 3, e123.PubMedCrossRefGoogle Scholar
  10. 10.
    Gschwind, A., Fischer, O.M. and Ullrich, A. (2004). The discovery of receptor tyrosine kinases: targets for cancer therapy. Nat. Rev. Cancer. 4, 361–370.PubMedCrossRefGoogle Scholar
  11. 11.
    Pestourie, C., Cerchia, L., Gombert, K., Aissouni, Y., Boulay, J., de Franciscis, V., Libri, D., Tavitian, B. and Duconge, F. (2006) Comparison of different strategies to select aptamers against a transmembrane protein target. Oligonucleotides 16, 323–335.PubMedCrossRefGoogle Scholar
  12. 12.
    Jhiang, S.M. (2000) The RET proto-oncogene in human cancers. Oncogene 19, 5590–5597.PubMedCrossRefGoogle Scholar
  13. 13.
    Ichihara, M., Murakumo, Y. and Takahashi, M. (2004). RET and neuroendocrine tumors. Cancer Lett. 204,197–211.PubMedCrossRefGoogle Scholar
  14. 14.
    Hansford, J.R. and Mulligan, L.M. (2000) Multiple endocrine neoplasia type 2 and RET: from neoplasia to neurogenesis. J. Med. Genet. 37, 817–827.PubMedCrossRefGoogle Scholar
  15. 15.
    Takahashi, M. (2001) The GDNF/Ret signaling pathway and human diseases. Cytokine Growth Factor Rev. 12, 361–373.PubMedCrossRefGoogle Scholar
  16. 16.
    Putzer, B.M. and Drosten, M. (2004) The RET proto-oncogene: a potential target for molecular cancer therapy. Trends Mol. Med. 10, 351–357.PubMedCrossRefGoogle Scholar
  17. 17.
    Maniè, S., Santoro, M., Fusco, A. and Billaud, M. (2001) The RET receptor: function in development and dysfunction in congenital malformation. Trends Genet. 17, 580–589.PubMedCrossRefGoogle Scholar
  18. 18.
    Pirollo, K.F., Zon, G., Rait, A., Zhou, Q., Yu, W., Hogrefe, R. and Chang, E.H. (2006) Tumor-targeting nanoimmunoliposome complex for short interfering RNA delivery. Human Gene Ther. 17, 117–124.CrossRefGoogle Scholar
  19. 19.
    Song, E., Zhu, P., Lee, S., Chowdhury, D., Kussman, S., Dykxhoorn, D.M., Feng, Y., Palliser, D., Weiner, D.B., Shankar, P., Marasco, W.A. and Lieberman, J. (2005) Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors.Nat. Biotechnol. 23, 709–717.PubMedCrossRefGoogle Scholar
  20. 20.
    Sioud, M. (2006) Single-stranded small interfering RNA are more immunostimulatory than their double-stranded counterparts: A central role for 2'-hydroxyl uridines in immune responses. Eur. J. Immunol. 36, 1222–1230.PubMedCrossRefGoogle Scholar
  21. 21.
    Farokhzad, O.C., Cheng, J., Teply, B.A., Sherifi, I., Jon, S., Kantoff, P.W., Richie, J.P. and Langer, R. (2006) Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc. Natl. Acad. Sci. U.S.A. 103, 6315–6320.Google Scholar
  22. 22.
    Chu, T.C., Twu, K.T., Ellington, A.D. and Levy, M. (2006) Aptamer mediated siRNA delivery. Nucleic Acids Res. 34, e73.PubMedCrossRefGoogle Scholar
  23. 23.
    McNamara, J.O. 2nd, Andrechek, E.R., Wang, Y., Viles, K.D., Rempel, R.E., Gilboa, E., Sullenger, B.A. and Giangrande, P.H. (2006) Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nat. Biotechnol. 24, 1005–1115.PubMedCrossRefGoogle Scholar
  24. 24.
    Chen, C.H., Chernis, G.A., Hoang, V.Q. and Landgraf, R. (2003). Inhibition of heregulin signaling by an aptamer that preferentially binds to the oligomeric form of human epidermal growth factor receptor-3. Proc. Natl. Acad. Sci. U.S.A. 100, 9226–9231.Google Scholar
  25. 25.
    Lupold, S.E., Hicke, B.J., Lin, Y. and Coffey, D.S. (2002). Identification and characterization of nuclease-stabilized RNA molecules that bind human prostate cancer cells via the prostate-specific membrane antigen. Cancer Res. 62, 4029–4033.PubMedGoogle Scholar
  26. 26.
    Mi, J., Zhang, X., Giangrande, P.H., McNamara, J.O., 2nd, Nimjee, S.M., Sarraf-Yazdi, S., Sullenger, B.A. and Clary, B.M. (2005). Targeted inhibition of alphavbeta3 integrin with an RNA aptamer impairs endothelial cell growth and survival. Biochem. Biophys. Res. Commun. 338, 956–963.PubMedCrossRefGoogle Scholar
  27. 27.
    Mori, T., Oguro, A., Ohtsu, T. and Nakamura, Y (2004). RNA aptamers selected against the receptor activator of NF-kappaB acquire general affinity to proteins of the tumor necrosis factor receptor family. Nucleic Acids Res. 32, 6120–6128.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Laura Cerchia
    • 1
  • Paloma H. Giangrande
    • 2
  • James O. McNamara
    • 2
  • Vittorio de Franciscis
    • 1
  1. 1.Istituto per l’Endocrinologia e Oncologia Sperimentale “G. Salvatore,”Italy
  2. 2.Department of Internal Medicine, Division of CardiologyUniversity of IowaIowa CityUSA

Personalised recommendations