Skip to main content

Identification of Target and Function Specific Antibodies for Effective Drug Delivery

  • Protocol
  • First Online:
Therapeutic Antibodies

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 525))

Abstract

Phage antibody technology is a powerful approach for generating human antibodies to virtually any target antigen. For many therapeutic applications, it is useful to generate antibodies that bind to cell-surface receptors in a manner where binding results in internalization of the antibody. This allows use of the antibody to deliver toxic payloads intracellularly to achieve a therapeutic effect. Here we describe how phage antibody libraries can be directly selected on tumor cell lines to generate antibodies binding cell-surface receptors and which are rapidly internalized upon binding. Protocols are provided showing how to (1) directly select internalizing antibodies from phage antibody libraries; (2) screen phage antibodies in a high-throughput flow cytometry assay for binding to the tumor cell line used for selection; (3) identify the antigen bound by the phage antibody using immunoprecipitation and mass spectrometry; and (4) verify and quantitate such that phage antibodies are internalized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Piccart-Gebhart, M. J., Procter, M., Leyland-Jones, B., Goldhirsch, A., Untch, M., Smith, I., et al. (2005) Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N. Engl. J. Med. 353, 1659–1672.

    Article  PubMed  CAS  Google Scholar 

  2. Cunningham, D., Humblet, Y., Siena, S., Khayat, D., Bleiberg, H., Santoro, A., et al. (2004) Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N. Engl. J. Med. 351, 337–345.

    Article  PubMed  CAS  Google Scholar 

  3. Hainsworth, J. D., Burris, H. A., 3rd, Morrissey, L. H., Litchy, S., Scullin, D. C., Jr., Bearden, J. D., 3rd, et al. (2000) Rituximab monoclonal antibody as initial systemic therapy for patients with low-grade non-Hodgkin lymphoma. Blood 95, 3052–3056.

    PubMed  CAS  Google Scholar 

  4. Wendtner, C. M., Ritgen, M., Schweighofer, C. D., Fingerle-Rowson, G., Campe, H., Jager, G., et al. (2004) Consolidation with alemtuzumab in patients with chronic lymphocytic leukemia (CLL) in first remission – experience on safety and efficacy within a randomized multicenter phase III trial of the German CLL Study Group (GCLLSG). Leukemia 18, 1093–1101.

    Article  PubMed  CAS  Google Scholar 

  5. Kreitman, R. J., Pastan, I. (2006) Immunotoxins in the treatment of hematologic malignancies. Curr. Drug Targets 7, 1301–1311.

    Article  PubMed  CAS  Google Scholar 

  6. Lazar, G. A., Dang, W., Karki, S., Vafa, O., Peng, J. S., Hyun, L., et al. (2006) Engineered antibody Fc variants with enhanced effector function. Proc. Natl. Acad. Sci. USA 103, 4005–4010.

    Google Scholar 

  7. Nielsen, U. B., Kirpotin, D. B., Pickering, E. M., Hong, K., Park, J. W., Refaat Shalaby, M., et al. (2002) Therapeutic efficacy of anti-ErbB2 immunoliposomes targeted by a phage antibody selected for cellular endocytosis. Biochim. Biophys. Acta 1591, 109–118.

    Article  PubMed  CAS  Google Scholar 

  8. Reichert, J. M., Valge-Archer, V. E. (2007) Development trends for monoclonal antibody cancer therapeutics. Nat. Rev. Drug Discov. 6, 349–356.

    Article  PubMed  CAS  Google Scholar 

  9. Marks, J. D., Hoogenboom, H. R., Bonnert, T. P., McCafferty, J., Griffiths, A. D., Winter, G. (1991) By-passing immunization. Human antibodies from V-gene libraries displayed on phage. J. Mol. Biol. 222, 581–597.

    Article  PubMed  CAS  Google Scholar 

  10. Sheets, M. D., Amersdorfer, P., Finnern, R., Sargent, P., Lindquist, E., Schier, R., et al. (1998) Efficient construction of a large nonimmune phage antibody library: the production of high-affinity human single-chain antibodies to protein antigens. Proc. Natl. Acad. Sci. USA 95, 6157–6162.

    Google Scholar 

  11. Andersen, P. S., Stryhn, A., Hansen, B. E., Fugger, L., Engberg, J., Buus, S. (1996) A recombinant antibody with the antigen-specific, major histocompatibility complex-restricted specificity of T cells. Proc. Natl. Acad. Sci. USA 93, 1820–1824.

    Google Scholar 

  12. Barry, M. A., Dower, W. J., and Johnston, S. A. (1996) Toward cell-targeting gene therapy vectors: selection of cell-binding peptides from random peptide-presenting phage libraries. Nat. Med. 2, 299–305.

    Article  PubMed  CAS  Google Scholar 

  13. Cai, X., Garen, A. (1995) Anti-melanoma antibodies from melanoma patients immunized with genetically modified autologous tumor cells: selection of specific antibodies from single-chain Fv fusion phage libraries. Proc. Natl. Acad. Sci. USA 92, 6537–6541.

    Google Scholar 

  14. de Kruif, J., Terstappen, L., Boel, E., Logtenberg, T. (1995) Rapid selection of cell subpopulation-specific human monoclonal antibodies from a synthetic phage antibody library. Proc. Natl. Acad. Sci. USA 92, 3938–3942.

    Google Scholar 

  15. Marks, J. D., Ouwehand, W. H., Bye, J. M., Finnern, R., Gorick, B. D., Voak, D., et al. (1993) Human antibody fragments specific for human blood group antigens from a phage display library. Biotechnology (NY) 11, 1145–1149.

    CAS  Google Scholar 

  16. Hoogenboom, H. R., Lutgerink, J. T., Pelsers, M. M., Rousch, M. J., Coote, J., Van Neer, N., et al. (1999) Selection-dominant and nonaccessible epitopes on cell-surface receptors revealed by cell-panning with a large phage antibody library. Eur. J. Biochem. 260, 774–784.

    Article  PubMed  CAS  Google Scholar 

  17. Hart, S. L., Knight, A. M., Harbottle, R. P., Mistry, A., Hunger, H. D., Cutler, D. F., et al. (1994) Cell binding and internalization by filamentous phage displaying a cyclic Arg-Gly-Asp-containing peptide. J. Biol. Chem. 269, 12468–12474.

    PubMed  CAS  Google Scholar 

  18. Becerril, B., Poul, M. A., and Marks, J. D. (1999) Toward selection of internalizing antibodies from phage libraries. Biochem. Biophys. Res. Commun. 255, 386–393.

    Article  PubMed  CAS  Google Scholar 

  19. Huie, M. A., Cheung, M. C., Muench, M. O., Becerril, B., Kan, Y. W., Marks, J. D. (2001) Antibodies to human fetal erythroid cells from a nonimmune phage antibody library. Proc. Natl. Acad. Sci. USA 98, 2682–2687.

    Google Scholar 

  20. O’Connell, D., Becerril, B., Roy-Burman, A., Daws, M., Marks, J. D. (2002) Phage versus phagemid libraries for generation of human monoclonal antibodies. J. Mol. Biol. 321, 49–56.

    Article  PubMed  Google Scholar 

  21. Poul, M. A., Becerril, B., Nielsen, U. B., Morisson, P., Marks, J. D. (2000) Selection of tumor-specific internalizing human antibodies from phage libraries. J. Mol. Biol. 301, 1149–1161.

    Article  PubMed  CAS  Google Scholar 

  22. Heitner, T., Moor, A., Garrison, J. L., Marks, C., Hasan, T., Marks, J. D. (2001) Selection of cell binding and internalizing epidermal growth factor receptor antibodies from a phage display library. J. Immunol. Methods 248, 17–30.

    Article  PubMed  CAS  Google Scholar 

  23. Park, J. W., Hong, K., Kirpotin, D. B., Colbern, G., Shalaby, R., Baselga, J., et al. (2002) Anti-HER2 immunoliposomes: enhanced efficacy attributable to targeted delivery. Clin. Cancer Res. 8, 1172–1181.

    PubMed  CAS  Google Scholar 

  24. Zhou, Y., Drummond, D. C., Zou, H., Hayes, M. E., Adams, G. P., Kirpotin, D. B., et al. (2007) Impact of single-chain Fv antibody fragment affinity on nanoparticle targeting of epidermal growth factor receptor-expressing tumor cells. J. Mol. Biol. 371, 934–947.

    Article  PubMed  CAS  Google Scholar 

  25. Liu, B., Conrad, F., Cooperberg, M. R., Kirpotin, D. B., Marks, J. D. (2004) Mapping tumor epitope space by direct selection of single-chain Fv antibody libraries on prostate cancer cells. Cancer Res. 64, 704–710.

    Article  PubMed  CAS  Google Scholar 

  26. Goenaga, A. L., Zhou, Y., Legay, C., Bougherara, H., Huang, L., Liu, B., et al. (2007) Identification and characterization of tumor antigens by using antibody phage display and intrabody strategies. Mol. Immunol. 44, 3777–3788.

    Article  PubMed  CAS  Google Scholar 

  27. Nielsen, U. B., Kirpotin, D. B., Pickering, E. M., Drummond, D. C., Marks, J. D. (2006) A novel assay for monitoring internalization of nanocarrier coupled antibodies. BMC Immunol. 7, 24.

    Article  PubMed  Google Scholar 

  28. Schier, R., Marks, J. D., Wolf, E. J., Apell, G., Wong, C., McCartney, J. E., et al. (1995) In vitro and in vivo characterization of a human anti-c-erbB-2 single-chain Fv isolated from a filamentous phage antibody library. Immunotechnology 1, 73–81.

    Article  PubMed  CAS  Google Scholar 

  29. Liu, B., Huang, L., Sihlbom, C., Burlingame, A., and Marks, J. D. (2002) Towards proteome-wide production of monoclonal antibody by phage display. J. Mol. Biol. 315, 1063–1073.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by NIH grant P50 CA58207.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Zhou, Y., Marks, J.D. (2009). Identification of Target and Function Specific Antibodies for Effective Drug Delivery. In: Dimitrov, A. (eds) Therapeutic Antibodies. Methods in Molecular Biology™, vol 525. Humana Press. https://doi.org/10.1007/978-1-59745-554-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-554-1_7

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-92-3

  • Online ISBN: 978-1-59745-554-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics