Advertisement

Antibody Fragment Expression and Purification

  • Dimana Dimitrova
  • Vidita Choudhry
  • Christopher C. Broder
Protocol
Part of the Methods in Molecular Biology™ book series (MIMB, volume 525)

Abstract

Interest in the potential of monoclonal antibodies (mAbs) to serve as therapeutic agents has surged in the past decade with a major emphasis on human viral diseases. There has been much attention in this area directed towards the human immunodeficiency virus type-1 (HIV-1) and promising research developments have emerged on the inhibition of HIV-1 infection by mAbs and the identification of several highly conserved neutralizing epitopes. More recently, potent fully-human neutralizing mAbs have been developed against a variety of important human viral disease agents including the paramyxoviruses Hendra virus and Nipah virus, and human or humanized mAbs have been developed against severe acute respiratory syndrome coronavirus (SARS CoV), and West Nile virus, among others. Most of these more recently developed antiviral mAbs have come from the use of antibody phage-display technologies and the implementation of simplified, inexpensive yet efficient methods, for expressing and purifying the initially selected fragment antibodies is of prime importance in further facilitating this area of research.

Key words

Monoclonal antibody recombinant phage purification 

Notes

Acknowledgement

This work was supported in part by Middle Atlantic Regional Center of Excellence (MARCE) for Biodefense and Emerging Infectious Disease Research, NIH AI057168 and AI054715 grants C.C.B.

References

  1. 1.
    Zafir-Lavie, I., Michaeli, Y., and Reiter, Y. (2007) Novel antibodies as anticancer agents. Oncogene 26, 3714–3733.PubMedCrossRefGoogle Scholar
  2. 2.
    Weiner, L. M. (2007) Building better magic bullets – improving unconjugated monoclonal antibody therapy for cancer. Nat. Rev. Cancer 7, 701–706.PubMedCrossRefGoogle Scholar
  3. 3.
    Johnson, S., Oliver, C., Prince, G. A., Hemming, V. G., Pfarr, D. S., Wang, S. C., Dormitzer, M., O'Grady, J., Koenig, S., Tamura, J. K., Woods, R., Bansal, G., Couchenour, D., Tsao, E., Hall, W. C., and Young, J. F. (1997) Development of a humanized monoclonal antibody (MEDI-493) with potent in vitro and in vivo activity against respiratory syncytial virus. J. Infect. Dis. 176, 1215–1224.PubMedCrossRefGoogle Scholar
  4. 4.
    Zhu, Z., Dimitrov, A. S., Bossart, K. N., Crameri, G., Bishop, K. A., Choudhry, V., Mungall, B. A., Feng, Y. R., Choudhary, A., Zhang, M. Y., Feng, Y., Wang, L. F., Xiao, X., Eaton, B. T., Broder, C. C., and Dimitrov, D. S. (2006) Potent neutralization of Hendra and Nipah viruses by human monoclonal antibodies. J. Virol. 80, 891–899.PubMedCrossRefGoogle Scholar
  5. 5.
    Choudhry, V., Zhang, M. Y., Sidorov, I. A., Louis, J. M., Harris, I., Dimitrov, A. S., Bouma, P., Cham, F., Choudhary, A., Rybak, S. M., Fouts, T., Montefiori, D. C., Broder, C. C., Quinnan, G. V., Jr., and Dimitrov, D. S. (2007) Cross-reactive HIV-1 neutralizing monoclonal antibodies selected by screening of an immune human phage library against an envelope glycoprotein (gp140) isolated from a patient (R2) with broadly HIV-1 neutralizing antibodies. Virology 363, 79–90.PubMedCrossRefGoogle Scholar
  6. 6.
    Zhu, Z., Chakraborti, S., He, Y., Roberts, A., Sheahan, T., Xiao, X., Hensley, L. E., Prabakaran, P., Rockx, B., Sidorov, I. A., Corti, D., Vogel, L., Feng, Y., Kim, J. O., Wang, L. F., Baric, R., Lanzavecchia, A., Curtis, K. M., Nabel, G. J., Subbarao, K., Jiang, S., and Dimitrov, D. S. (2007) Potent cross-reactive neutralization of SARS coronavirus isolates by human monoclonal antibodies. Proc. Natl. Acad. Sci. USA 104, 12123–12128.Google Scholar
  7. 7.
    Oliphant, T., Engle, M., Nybakken, G. E., Doane, C., Johnson, S., Huang, L., Gorlatov, S., Mehlhop, E., Marri, A., Chung, K. M., Ebel, G. D., Kramer, L. D., Fremont, D. H., and Diamond, M. S. (2005) Development of a humanized monoclonal antibody with therapeutic potential against West Nile virus. Nat. Med. 11, 522–530.PubMedCrossRefGoogle Scholar
  8. 8.
    Zhu, Z., Dimitrov, A. S., Chakraborti, S., Dimitrova, D., Xiao, X., Broder, C. C., and Dimitrov, D. S. (2006) Development of human monoclonal antibodies against diseases caused by emerging and biodefense-related viruses. Expert Rev. Anti. Infect. Ther. 4, 57–66.PubMedCrossRefGoogle Scholar
  9. 9.
    Rader, C. and Barbas, C. F., 3rd (1997) Phage display of combinatorial antibody libraries. Curr. Opin. Biotechnol. 8, 503–508.PubMedCrossRefGoogle Scholar
  10. 10.
    Hayden, M. S., Gilliland, L. K., and Ledbetter, J. A. (1997) Antibody engineering. Curr. Opin. Immunol. 9, 201–212.PubMedCrossRefGoogle Scholar
  11. 11.
    Droge, M. J., Boersma, Y. L., Braun, P. G., Buining, R. J., Julsing, M. K., Selles, K. G., van Dijl, J. M., and Quax, W. J. (2006) Phage display of an intracellular carboxylesterase of Bacillus subtilis: comparison of Sec and Tat pathway export capabilities. Appl. Environ. Microbiol. 72, 4589–4595.PubMedCrossRefGoogle Scholar
  12. 12.
    Warren, D. J., Bjerner, J., Paus, E., Bormer, O. P., and Nustad, K. (2005) Use of an in vivo biotinylated single-chain antibody as capture reagent in an immunometric assay to decrease the incidence of interference from heterophilic antibodies. Clin. Chem. 51, 830–838.PubMedCrossRefGoogle Scholar
  13. 13.
    Barbas, C., Burton, D., Scott, J., and Silverman, G. (2001) Phage Display: A Laboratory Manual. Cold Spring Harbor Lab. Press, Plainview, New York.Google Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Dimana Dimitrova
    • 1
  • Vidita Choudhry
    • 1
  • Christopher C. Broder
    • 1
  1. 1.Uniformed Services University of the Health SciencesBethesdaUSA

Personalised recommendations