Skip to main content

Anti-CD22 Onconase: Preparation and Characterization

  • Protocol
  • First Online:
Therapeutic Antibodies

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 525))

Abstract

Antibodies can be conjugated to effector molecules to derive targeted therapeutics with properties such as cell-specific cytotoxicity. The murine anti-CD22 antibody RFB4 linked to a member of the ribonuclease A superfamily, Onconase (Onc), becomes a potential drug candidate for non-Hodgkin’s lymphoma. Onc is currently in Phase III clinical trials for unresectable malignant mesothelioma but conjugation to RFB4 considerably enhances its specificity for CD22+ lymphomas. RFB4-targeted Onc is effective in preclinical models, causes little non-specific toxicities in mice, and has favorable formulation properties. Derivatization and conjugation of RFB4 and Onc have been optimized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kohler, G., and Milstein, C. (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495–497.

    Article  PubMed  CAS  Google Scholar 

  2. Carter, P. J. (2006) Potent antibody therapeutics by design. Nature Rev. Immunol. 6, 343–357.

    Article  CAS  Google Scholar 

  3. Hamann, P. R., Hinman, L. M., Hollander, I., Beyer, C. F., Lindh, D., Holcomb, R., et al. (2002) Gemtuzumab ozogamicin, a potent and selective anti-CD33 antibody–calicheamicin conjugate for treatment of acute myeloid leukemia. Bioconjug. Chem. 13 (1), 47–58.

    Article  PubMed  CAS  Google Scholar 

  4. Pastan, I., Hassan, R., Fitzgerald, D. J., and Kreitman, R. J. (2007) Immunotoxin treatment of cancer. Annu. Rev. Med. 58, 221–237.

    Article  PubMed  CAS  Google Scholar 

  5. Wong, L., Suh, D. Y., and Frankel, A. E. (2005) Toxin conjugate therapy of cancer. Semin. Oncol. 32, 591–595.

    Article  PubMed  CAS  Google Scholar 

  6. Rybak, S. M., and Newton, D. L. (2007) Immunotoxins and beyond: Targeted RNases. In: Dubel, S. (ed). Handbook of Therapeutic Antibodies, Wiley-VCH, Weinheim.

    Google Scholar 

  7. Rybak, S. M., Saxena, S. K., Ackerman, E. J., and Youle, R. J. (1991) Cytotoxic potential of ribonuclease and ribonuclease hybrid proteins. J. Biol. Chem. 266, 21202–21207.

    PubMed  CAS  Google Scholar 

  8. Rybak, S. M., Newton, D. L., Mikulski, S. M., Viera, A., and Youle, R. J. (1993) Cytotoxic Onconase and ribonuclease A chimeras: Comparison and in vitro characterization. Drug Delivery 1, 3–10.

    Article  CAS  Google Scholar 

  9. Newton, D. L., Ilercil, O., Laske, D. W., Oldfield, E., Rybak, S. M., and Youle, R. J. (1992) Cytotoxic ribonuclease chimeras: Targeted tumoricidal activity in vitro and in vivo. J. Biol. Chem. 267, 19572–19578.

    PubMed  CAS  Google Scholar 

  10. Kelm, S., Pelz, A., Schauer, R., Filbin, M. T., Tang, S., deBellard, M.-E., et al. (1994) Sialoadhesin, myelin-associate glycoprotein and CD22 define a new family of sialic acid-dependent adhesion molecules of the immunoglobulin superfamily. Curr. Biol. 4, 965–972.

    Article  PubMed  CAS  Google Scholar 

  11. Kreitman, R. J., Squires, D. R., Stetler-Stevenson, M., Noel, P., fitzGerald, D. J. P., Wilson, W. H., et al. (2005) Phase I trial of recombinant immunotoxin RFB4(dsFv)-PAE38 (BL22) in patients with B-cell malignancies. J. Clin. Onc. 23, 6719–6729.

    Article  CAS  Google Scholar 

  12. Darzynkiewicz, Z., Carter, S. P., Mikulski, S. M., Ardelt, W. J., and Shogen, K. (1988) Cytostatic and cytotoxic effects of Pannon (P-30 protein) a novel anti-cancer agent. Cell Tissue Kinet. 21, 169–182.

    PubMed  CAS  Google Scholar 

  13. Mikulski, S. M., Ardelt, W., Shogen, K., Bernstein, E. H., and Menduke, H. (1990) Striking increase of survival of mice bearing M109 Madison carcinoma treated with a novel protein from amphibian embryos. J. Natl. Cancer Inst. 82, 151–153.

    PubMed  CAS  Google Scholar 

  14. Lin, J. J., Newton, D. L., Mikulski, S. M., Kung, H. F., Youle, R. J., and Rybak, S. M. (1994) Characterization of the mechanism of cellular and cell free protein synthesis inhibition by an anti-tumor ribonuclease. Biochem. Biophys. Res. Commun. 204, 156–162.

    Article  PubMed  CAS  Google Scholar 

  15. Iordanov, M. S., Ryabinina, O. P., Wong, J., Dinh, T.-H., Newton, D. L., Rybak, S. M., et al. (2000) Molecular determinants of programmed cell death induced by the cytotoxic ribonuclease Onconase: evidence for cytotoxic mechanisms different from inhibition of protein synthesis. Cancer Res. 60, 1983–1994.

    PubMed  CAS  Google Scholar 

  16. Saxena, S., Sirdeshmukh, R., Ardelt, W., Mikulski, S. M., Shogen, k., and Youle, R. J. (2002) Entry into cells and selective degradation of tRNAs by a cytotoxic member of the RNase A family. J. Biol. Chem. 277, 15142–15146.

    Article  PubMed  CAS  Google Scholar 

  17. Costanzi, J., Sidransky, D., Navon, A., and Goldsweig, H. (2005) Ribonucleases as a novel pro-apoptotic anticancer strategy: review of the preclinical and clinical data for ranpirnase. Cancer Invest. 23, 643–650.

    Article  PubMed  CAS  Google Scholar 

  18. Ardelt, B., Ardelt, W., and Darzynkiewicz, Z. (2003) Cytotoxic ribonucleases and RNA interference (RNAi). Cell Cycle 2, 22–24.

    Article  PubMed  CAS  Google Scholar 

  19. Mikulski, S., Costanzi, J., Vogelzang, N., McCachres, S., Taub, R., Chun, H., et al. (2002) Phase II trial of a single weekly intravenous dose of ranpirnase in patients with unresectable malignant mesothelioma. J. Clin. Oncol. 20, 274–281.

    Article  PubMed  CAS  Google Scholar 

  20. Ardelt, W., Mikulski, S. M., and Shogen, K. (1991) Amino acid sequence of an anti-tumor protein from Rana pipiens oocytes and early embryos. J. Biol. Chem. 266, 245–251.

    PubMed  CAS  Google Scholar 

  21. Newton, D. L., Walbridge, S., Mikulski, S. M., Ardelt, W., Shogen, K., Ackerman, S. J., et al. (1994) Toxicity of an anti-tumor ribonuclease to Purkinje neurons. J. Neurosci. 14, 538–544.

    PubMed  CAS  Google Scholar 

  22. Messmann, R. A., Vitetta, E. S., Headlee, D., Senderowicz, A. M., Figg, W. D., Schindler, J., et al. (2000) A phase 1 study of combination therapy with immunotoxins IgG-HD37-deglycosylated Ricin A chain (dgA) and IgG-RFB4-dgA (combotox) in patients with refractory CD19 (+), CD22 (–) B cell lymphoma. Clin. Cancer Res. 6, 1302–1313.

    PubMed  CAS  Google Scholar 

  23. Ghetie, M. A., Richardson, J., Tucker, T., Jones, D., Uhr, J. W., and Vitetta, E. S. (1990) Disseminated or localized growth of a human B-cell tumor (Daudi) in SCID mice. Int. J. Cancer 45, 481–485.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The technical support of Dale Ruby and Miriam Hursey is gratefully acknowledged. We thank Dr. Ellen Vitetta for making the original RFB4 antibody clone available and Kuslima Shogen for the Onc. Our sincere thanks to Drs. Stephen Creekmore, Toby Hecht, and Edward A. Sausville for many helpful discussions. This project has been funded in whole or in part with Federal funds from the National Cancer Institute, National Institutes of Health, under Contract No. NO1-CO-12400. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the US Government. This research was supported (in part) by the Developmental Therapeutics Program in the Division of Cancer Treatment and Diagnosis of the National Cancer Institute.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Newton, D.L., Stockwin, L.H., Rybak, S.M. (2009). Anti-CD22 Onconase: Preparation and Characterization. In: Dimitrov, A. (eds) Therapeutic Antibodies. Methods in Molecular Biology™, vol 525. Humana Press. https://doi.org/10.1007/978-1-59745-554-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-554-1_22

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-92-3

  • Online ISBN: 978-1-59745-554-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics