Preparation of Recombinant Viral Glycoproteins for Novel and Therapeutic Antibody Discovery

  • Yee-Peng Chan
  • Lianying Yan
  • Yan-Ru Feng
  • Christopher C. Broder
Part of the Methods in Molecular Biology™ book series (MIMB, volume 525)


Neutralizing antibodies are a critical component in the protection or recovery from viral infections. In the absence of available vaccines or antiviral drugs for many important human viral pathogens, the identification and characterization of new human monoclonal antibodies (hmAbs) that are able to neutralize viruses offers the possibility for effective pre- and/or post-exposure therapeutic modalities. Such hmAbs may also help in our understanding of the virus entry process, the mechanisms of virus neutralization, and in the eventual development of specific entry inhibitors, vaccines, and research tools. The majority of the more recently developed antiviral hmAbs have come from the use of antibody phage-display technologies using both naïve and immune libraries. Many of these agents are also enveloped viruses possessing important neutralizing determinants within their membrane-anchored envelope glycoproteins, and the use of recombinant, soluble versions of these viral glycoproteins is often critical in the isolation and development of antiviral hmAbs. This chapter will detail several methods that have been successfully employed to produce, purify, and characterize soluble and secreted versions of several viral envelope glycoproteins which have been successfully used as antigens to capture and isolate human phage-displayed monoclonal antibodies.

Key words

HIV Paramyxovirus Hendra virus Nipah virus glycoprotein recombinant purification oligomerization monoclonal antibody epitope conformation 



This work was supported in part by Middle Atlantic Regional Center of Excellence (MARCE) for Biodefense and Emerging Infectious Disease Research, NIH AI057168 and AI054715 grants to C.C.B.


  1. 1.
    Graham, B. S. and Crowe, J., J.E. (2007) Immunization against viral diseases. In Fields Virology (Knipe, D. M. and Howley, P. M., eds.), pp. 489–538, Lippincott Williams & Wilkins, Philadelphia.Google Scholar
  2. 2.
    Casadevall, A., Dadachova, E., and Pirofski, L. A. (2004) Passive antibody therapy for infectious diseases. Nat. Rev. Microbiol. 2, 695–703.PubMedCrossRefGoogle Scholar
  3. 3.
    Dimitrov, D. S. (2004) Virus entry: molecular mechanisms and biomedical applications. Nat. Rev. Microbiol. 2, 109–122.PubMedCrossRefGoogle Scholar
  4. 4.
    Zeitlin, L., Cone, R. A., Moench, T. R. and Whaley, K. J. (2000) Preventing infectious disease with passive immunization. Microbes Infect. 2, 701–708.PubMedCrossRefGoogle Scholar
  5. 5.
    Wu, H., Pfarr, D. S., Johnson, S., Brewah, Y. A., Woods, R. M., Patel, N. K., White, W. I., Young, J. F., and Kiener, P. A. (2007) Development of Motavizumab, an ultra-potent antibody for the prevention of respiratory syncytial virus infection in the upper and lower respiratory tract. J. Mol. Biol. 368, 652–665.PubMedCrossRefGoogle Scholar
  6. 6.
    Burton, D. R. (2002) Antibodies, viruses and vaccines. Nat. Rev. Immunol. 2, 706–713.PubMedCrossRefGoogle Scholar
  7. 7.
    Casadevall, A. (1999) Passive antibody therapies: progress and continuing challenges. Clin. Immunol. 93, 5–15.PubMedCrossRefGoogle Scholar
  8. 8.
    Rader, C. and Barbas, C. F., 3rd (1997) Phage display of combinatorial antibody libraries. Curr. Opin. Biotechnol. 8, 503–508.PubMedCrossRefGoogle Scholar
  9. 9.
    Hayden, M. S., Gilliland, L. K., and Ledbetter, J. A. (1997) Antibody engineering. Curr. Opin. Immunol. 9, 201–212.PubMedCrossRefGoogle Scholar
  10. 10.
    Hudson, P. J. and Souriau, C. (2001) Recombinant antibodies for cancer diagnosis and therapy. Expert Opin. Biol. Ther. 1, 845–855.PubMedCrossRefGoogle Scholar
  11. 11.
    Choudhry, V., Zhang, M. Y., Sidorov, I. A., Louis, J. M., Harris, I., Dimitrov, A. S., Bouma, P., Cham, F., Choudhary, A., Rybak, S. M., Fouts, T., Montefiori, D. C., Broder, C. C., Quinnan, G. V., Jr., and Dimitrov, D. S. (2007) Cross-reactive HIV-1 neutralizing monoclonal antibodies selected by screening of an immune human phage library against an envelope glycoprotein (gp140) isolated from a patient (R2) with broadly HIV-1 neutralizing antibodies. Virology 363, 79–90.PubMedCrossRefGoogle Scholar
  12. 12.
    Zhang, M. Y., Xiao, X., Sidorov, I. A., Choudhry, V., Cham, F., Zhang, P. F., Bouma, P., Zwick, M., Choudhary, A., Montefiori, D. C., Broder, C. C., Burton, D. R., Quinnan, G. V., Jr., and Dimitrov, D. S. (2004) Identification and characterization of a new cross-reactive human immunodeficiency virus type 1-neutralizing human monoclonal antibody. J. Virol. 78, 9233–9242.PubMedCrossRefGoogle Scholar
  13. 13.
    Zhang, M. Y., Shu, Y., Sidorov, I., and Dimitrov, D. S. (2004) Identification of a novel CD4i human monoclonal antibody Fab that neutralizes HIV-1 primary isolates from different clades. Antiviral Res. 61, 161–164.PubMedCrossRefGoogle Scholar
  14. 14.
    Zhang, M. Y., Shu, Y., Phogat, S., Xiao, X., Cham, F., Bouma, P., Choudhary, A., Feng, Y. R., Sanz, I., Rybak, S., Broder, C. C., Quinnan, G. V., Evans, T., and Dimitrov, D. S. (2003) Broadly cross-reactive HIV neutralizing human monoclonal antibody Fab selected by sequential antigen panning of a phage display library. J. Immunol. Methods 283, 17–25.PubMedCrossRefGoogle Scholar
  15. 15.
    Zhang, M. Y., Choudhry, V., Sidorov, I. A., Tenev, V., Vu, B. K., Choudhary, A., Lu, H., Stiegler, G. M., Katinger, H. W., Jiang, S., Broder, C. C. and Dimitrov, D. S. (2006) Selection of a novel gp41-specific HIV-1 neutralizing human antibody by competitive antigen panning. J. Immunol. Methods 317, 21–30.PubMedCrossRefGoogle Scholar
  16. 16.
    Moulard, M., Phogat, S. K., Shu, Y., Labrijn, A. F., Xiao, X., Binley, J. M., Zhang, M. Y., Sidorov, I. A., Broder, C. C., Robinson, J., Parren, P. W., Burton, D. R., and Dimitrov, D. S. (2002) Broadly cross-reactive HIV-1-neutralizing human monoclonal Fab selected for binding to gp120-CD4-CCR5 complexes. Proc. Natl. Acad. Sci. USA 99, 6913–6918.Google Scholar
  17. 17.
    Zhu, Z., Dimitrov, A. S., Bossart, K. N., Crameri, G., Bishop, K. A., Choudhry, V., Mungall, B. A., Feng, Y. R., Choudhary, A., Zhang, M. Y., Feng, Y., Wang, L. F., Xiao, X., Eaton, B. T., Broder, C. C. and Dimitrov, D. S. (2006) Potent neutralization of Hendra and Nipah viruses by human monoclonal antibodies. J. Virol. 80, 891–899.PubMedCrossRefGoogle Scholar
  18. 18.
    Zhu, Z., Chakraborti, S., He, Y., Roberts, A., Sheahan, T., Xiao, X., Hensley, L. E., Prabakaran, P., Rockx, B., Sidorov, I. A., Corti, D., Vogel, L., Feng, Y., Kim, J. O., Wang, L. F., Baric, R., Lanzavecchia, A., Curtis, K. M., Nabel, G. J., Subbarao, K., Jiang, S., and Dimitrov, D. S. (2007) Potent cross-reactive neutralization of SARS coronavirus isolates by human monoclonal antibodies. Proc. Natl. Acad. Sci. USA 104, 12123–12128.Google Scholar
  19. 19.
    Quinnan, G. V. (1997) Immunization against viral diseases. In Antiviral Agents and Human Viral Disease (Galasso, G., Whitley, R. and Merigan, T. C., eds.), pp. 791–834, Raven Press, New York.Google Scholar
  20. 20.
    Doms, R. W., Lamb, R., Rose, J. K. and Helenius, A. (1993) Folding and assembly of viral membrane proteins. Virology 193, 545–562.PubMedCrossRefGoogle Scholar
  21. 21.
    Wiley, D. C. and Skehel, J. J. (1987) The structure and function of the hemagglutinin membrane glycoprotein of influenza virus. Ann. Rev. Biochem. 56, 365–394.PubMedCrossRefGoogle Scholar
  22. 22.
    Broder, C. C., Earl, P. L., Long, D., Abedon, S. T., Moss, B., and Doms, R. W. (1994) Antigenic implications of human immunodeficiency virus type 1 envelope quaternary structure: oligomer-specific and -sensitive monoclonal antibodies. Proc. Natl. Acad. Sci. USA 91, 11699–11703.Google Scholar
  23. 23.
    Garber, D. A., Silvestri, G., and Feinberg, M. B. (2004) Prospects for an AIDS vaccine: three big questions, no easy answers. Lancet Infect. Dis. 4, 397–413.PubMedCrossRefGoogle Scholar
  24. 24.
    Bossart, K. N., Crameri, G., Dimitrov, A. S., Mungall, B. A., Feng, Y. R., Patch, J. R., Choudhary, A., Wang, L. F., Eaton, B. T. and Broder, C. C. (2005) Receptor binding, fusion inhibition, and induction of cross-reactive neutralizing antibodies by a soluble G glycoprotein of hendra virus. J. Virol. 79, 6690–6702.PubMedCrossRefGoogle Scholar
  25. 25.
    Earl, P. L., Broder, C. C., Long, D., Lee, S. A., Peterson, J., Chakrabarti, S., Doms, R. W., and Moss, B. (1994) Native oligomeric human immunodeficiency virus type 1 envelope glycoprotein elicits diverse monoclonal antibody reactivities. J. Virol. 68, 3015–3026.PubMedGoogle Scholar
  26. 26.
    Yin, H. S., Wen, X., Paterson, R. G., Lamb, R. A., and Jardetzky, T. S. (2006) Structure of the parainfluenza virus 5 F protein in its metastable, prefusion conformation. Nature 439, 38–44.PubMedCrossRefGoogle Scholar
  27. 27.
    Yin, H. S., Paterson, R. G., Wen, X., Lamb, R. A., and Jardetzky, T. S. (2005) Structure of the uncleaved ectodomain of the paramyxovirus (hPIV3) fusion protein. Proc. Natl. Acad. Sci. USA. Google Scholar
  28. 28.
    Yang, X., Farzan, M., Wyatt, R., and Sodroski, J. (2000) Characterization of stable, soluble trimers containing complete ectodomains of human immunodeficiency virus type 1 envelope glycoproteins. J. Virol. 74, 5716–5725.PubMedCrossRefGoogle Scholar
  29. 29.
    Stamatatos, L., Lim, M. and Cheng-Mayer, C. (2000) Generation and structural analysis of soluble oligomeric gp140 envelope proteins derived from neutralization-resistant and neutralization-susceptible primary HIV type 1 isolates [In Process Citation]. AIDS Res. Hum. Retroviruses 16, 981–994.PubMedCrossRefGoogle Scholar
  30. 30.
    Schulke, N., Vesanen, M. S., Sanders, R. W., Zhu, P., Lu, M., Anselma, D. J., Villa, A. R., Parren, P. W., Binley, J. M., Roux, K. H., Maddon, P. J., Moore, J. P. and Olson, W. C. (2002) Oligomeric and conformational properties of a proteolytically mature, disulfide-stabilized human immunodeficiency virus type 1 gp140 envelope glycoprotein. J. Virol. 76, 7760–7776.PubMedCrossRefGoogle Scholar
  31. 31.
    Malvoisin, E. and Wild, F. (1994) Characterization of a secreted form of measles virus haemagglutinin expressed from a vaccinia virus recombinant. J. Gen. Virol. 75, 3603–3609.PubMedCrossRefGoogle Scholar
  32. 32.
    Heinz, F. X., Mandl, C. W., Holzmann, H., Kunz, C., Harris, B. A., Rey, F., and Harrison, S. C. (1991) The flavivirus envelope protein E: isolation of a soluble form from tick-borne encephalitis virus and its crystallization. J. Virol. 65, 5579–5583.PubMedGoogle Scholar
  33. 33.
    Mirza, A. M., Sheehan, J. P., Hardy, L. W., Glickman, R. L., and Iorio, R. M. (1993) Structure and function of a membrane anchor-less form of the hemagglutinin-neuraminidase glycoprotein of Newcastle disease virus. J. Biol. Chem. 268, 21425–21431.PubMedGoogle Scholar
  34. 34.
    Seto, N. O. and Gillam, S. (1994) Expression and characterization of a soluble rubella virus E1 envelope protein. J. Med. Virol. 44, 192–199.PubMedCrossRefGoogle Scholar
  35. 35.
    Wang, Z. M., Tong, L. L., Grant, D. and Cihlar, T. (2001) Expression and characterization of soluble human parainfluenza virus type 1 hemagglutinin-neuraminidase glycoprotein. J. Virol. Methods 98, 53–61.PubMedCrossRefGoogle Scholar
  36. 36.
    Gaudin, Y., Moreira, S., Benejean, J., Blondel, D., Flamand, A., and Tuffereau, C. (1999) Soluble ectodomain of rabies virus glycoprotein expressed in eukaryotic cells folds in a monomeric conformation that is antigenically distinct from the native state of the complete, membrane-anchored glycoprotein. J. Gen. Virol. 80, 1647–1656.PubMedGoogle Scholar
  37. 37.
    Zhang, P. F., Cham, F., Dong, M., Choudhary, A., Bouma, P., Zhang, Z., Shao, Y., Feng, Y. R., Wang, L., Mathy, N., Voss, G., Broder, C. C., and Quinnan, G. V., Jr. (2007) Extensively cross-reactive anti-HIV-1 neutralizing antibodies induced by gp140 immunization. Proc. Natl. Acad. Sci. USA May 31, [Epub ahead of print].Google Scholar
  38. 38.
    Quinnan, G. V., Jr., Yu, X. F., Lewis, M. G., Zhang, P. F., Sutter, G., Silvera, P., Dong, M., Choudhary, A., Sarkis, P. T., Bouma, P., Zhang, Z., Montefiori, D. C., Vancott, T. C., and Broder, C. C. (2005) Protection of rhesus monkeys against infection with minimally pathogenic simian-human immunodeficiency virus: correlations with neutralizing antibodies and cytotoxic T cells. J. Virol. 79, 3358–3369.PubMedCrossRefGoogle Scholar
  39. 39.
    Mungall, B. A., Middleton, D., Crameri, G., Bingham, J., Halpin, K., Russell, G., Green, D., McEachern, J., Pritchard, L. I., Eaton, B. T., Wang, L. F., Bossart, K. N., and Broder, C. C. (2006) Feline model of acute Nipah virus infection and protection with a soluble glycoprotein-based subunit vaccine. J. Virol. 80, 12293–12302.PubMedCrossRefGoogle Scholar
  40. 40.
    Broder, C. C. and Earl, P. L. (1999) Recombinant vaccinia viruses. Design, generation, and isolation. Mol. Biotechnol. 13, 223–245.PubMedCrossRefGoogle Scholar
  41. 41.
    Harbury, P. B., Zhang, T., Kim, P. S. and Alber, T. (1993) A switch between two-, three-, and four-stranded coiled coils in GCN4 leucine zipper mutants. Science 262, 1401–1407.PubMedCrossRefGoogle Scholar
  42. 42.
    Harbury, P. B., Kim, P. S. and Alber, T. (1994) Crystal structure of an isoleucine-zipper trimer. Nature 371, 80–83.PubMedCrossRefGoogle Scholar
  43. 43.
    Yang, X., Lee, J., Mahony, E. M., Kwong, P. D., Wyatt, R., and Sodroski, J. (2002) Highly stable trimers formed by human immunodeficiency virus type 1 envelope glycoproteins fused with the trimeric motif of T4 bacteriophage fibritin. J. Virol. 76, 4634–4642.PubMedCrossRefGoogle Scholar
  44. 44.
    Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.PubMedCrossRefGoogle Scholar
  45. 45.
    Schagger, H. and von Jagow, G. (1991) Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal. Biochem. 199, 220–231.CrossRefGoogle Scholar
  46. 46.
    Beddows, S., Schulke, N., Kirschner, M., Barnes, K., Franti, M., Michael, E., Ketas, T., Sanders, R. W., Maddon, P. J., Olson, W. C., and Moore, J. P. (2005) Evaluating the immunogenicity of a disulfide-stabilized, cleaved, trimeric form of the envelope glycoprotein complex of human immunodeficiency virus type 1. J. Virol. 79, 8812–8827.PubMedCrossRefGoogle Scholar
  47. 47.
    Binley, J. M., Sanders, R. W., Master, A., Cayanan, C. S., Wiley, C. L., Schiffner, L., Travis, B., Kuhmann, S., Burton, D. R., Hu, S. L., Olson, W. C., and Moore, J. P. (2002) Enhancing the proteolytic maturation of human immunodeficiency virus type 1 envelope glycoproteins. J. Virol. 76, 2606–2616.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Yee-Peng Chan
    • 1
  • Lianying Yan
    • 1
  • Yan-Ru Feng
    • 1
  • Christopher C. Broder
    • 1
  1. 1.Uniformed ServicesUniversity of the Health SciencesBethesdaUSA

Personalised recommendations