Skip to main content

Improving Antibody Binding Affinity and Specificity for Therapeutic Development

  • Protocol
  • First Online:
Therapeutic Antibodies

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 525))

Abstract

Affinity maturation is an important part of the therapeutic antibody development process as in vivo activity often requires high binding affinity. Here, we describe a targeted approach for affinity improvement of therapeutic antibodies. Sets of CDR residues that are solvent accessible and relatively diverse in natural antibodies are targeted for diversification. Degenerate oligonucleotides are used to generate combinatorial phage-displayed antibody libraries with varying degree of diversity at randomized positions from which high-affinity antibodies can be selected.

An advantage of using antibodies for therapy is their exquisite target specificity, which enables selective antigen binding and reduces off-target effects. However, it can be useful, and often it is necessary, to generate cross-reactive antibodies binding to not only the human antigen but also the corresponding non-human primate or rodent orthologs. Such cross-reactive antibodies can be used to validate the therapeutic targeting and examine the safety profile in preclinical animal models before committing to a costly development track. We show how affinity improvement and cross-species binding can be achieved in a one-step process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carter, P. J. (2006) Potent antibody therapeutics by design. Nat. Rev. Immunol. 6, 343–357.

    Article  PubMed  CAS  Google Scholar 

  2. Hoogenboom, H. R. (2005) Selecting and screening recombinant antibody libraries. Nat. Biotechnol. 23, 1105–1116.

    Article  PubMed  CAS  Google Scholar 

  3. Foote, J., and Winter, G. (1992) Antibody framework residues affecting the conformation of the hypervariable loops. J. Mol. Biol. 224, 487–499.

    Article  PubMed  CAS  Google Scholar 

  4. Lee, C. V., Liang, W. C., Dennis, M. S., Eigenbrot, C., Sidhu, S. S., and Fuh, G. (2004) High-affinity human antibodies from phage-displayed synthetic Fab libraries with a single framework scaffold. J. Mol. Biol. 340, 1073–1093.

    Article  PubMed  CAS  Google Scholar 

  5. Lee, C. V., Hymowitz, S. G., Wallweber, H. J., Gordon, N. C., Billeci, K. L., Tsai, S. P., et al. (2006) Synthetic anti-BR3 antibodies that mimic BAFF binding and target both human and murine B cells. Blood 108, 3103–3111.

    Article  PubMed  CAS  Google Scholar 

  6. Johnson, G., and Wu, T. T. (2000) Kabat database and its applications: 30 years after the first variability plot. Nucleic Acids Res. 28, 214–218.

    Article  PubMed  CAS  Google Scholar 

  7. Eigenbrot, C., Randal, M., Presta, L., Carter, P., and Kossiakoff, A. A. (1993) X-ray structures of the antigen-binding domains from three variants of humanized anti-p185HER2 antibody 4D5 and comparison with molecular modeling. J. Mol. Biol. 229, 969–995.

    Article  PubMed  CAS  Google Scholar 

  8. Chothia, C., and Lesk, A. M. (1987) Canonical structures for the hypervariable regions of immunoglobulins. J. Mol. Biol. 196, 901–917.

    Article  PubMed  CAS  Google Scholar 

  9. Smith, G. P., and Scott, J. K. (1993) Libraries of peptides and proteins displayed on filamentous phage. Methods Enzymol. 217, 228–257.

    Article  PubMed  CAS  Google Scholar 

  10. Lee, C. V., Sidhu, S. S., and Fuh, G. (2004) Bivalent antibody phage display mimics natural immunoglobulin. J. Immunol. Methods 284, 119–132.

    Article  PubMed  CAS  Google Scholar 

  11. Kabat, E. A., Wu, T. T., Perry, H. M., Gottesman, K. S., and Foeller, C. (1991) Sequences of Proteins of Immunological Interest, NIH, US Department of Health and Human Services, Washington, DC.

    Google Scholar 

  12. Gallop, M., Barrett, R., Dower, W., Fodor, S., and Gordon, E. (1994) Applications of combinatorial technologies to drug discovery. 1. Background and peptide combinatorial libraries. J. Med. Chem. 37, 1233–1251.

    Article  PubMed  CAS  Google Scholar 

  13. Weiss, G. A., Watanabe, C. K., Zhong, A., Goddard, A., and Sidhu, S. S. (2000) Rapid mapping of protein functional epitopes by combinatorial alanine scanning. Proc. Natl. Acad. Sci. USA 97, 8950–8954.

    Article  PubMed  CAS  Google Scholar 

  14. Vajdos, F. F., Adams, C. W., Breece, T. N., Presta, L. G., de Vos, A. M., and Sidhu, S. S. (2002) Comprehensive functional maps of the antigen-binding site of an anti-ErbB2 antibody obtained with shotgun scanning mutagenesis. J. Mol. Biol. 320, 415–428.

    Article  PubMed  CAS  Google Scholar 

  15. Sidhu, S. S., Lowman, H. B., Cunningham, B. C., and Wells, J. A. (2000) Phage display for selection of novel binding peptides. Methods Enzymol. 328, 333–363.

    Article  PubMed  CAS  Google Scholar 

  16. Kunkel, T. A., Roberts, J. D., and Zakour, R. A. (1987) Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 154, 367–382.

    Article  PubMed  CAS  Google Scholar 

  17. Sidhu, S. S., Lowman, H. B., Cunningham, B. C., and Wells, J. A. (2000) Phage display for selection of novel binding peptides. Methods Enzymol. 328, 333–363.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Bostrom, J., Lee, C.V., Haber, L., Fuh, G. (2009). Improving Antibody Binding Affinity and Specificity for Therapeutic Development. In: Dimitrov, A. (eds) Therapeutic Antibodies. Methods in Molecular Biology™, vol 525. Humana Press. https://doi.org/10.1007/978-1-59745-554-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-554-1_19

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-92-3

  • Online ISBN: 978-1-59745-554-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics