Skip to main content

Selection of Non-aggregating VH Binders from Synthetic VH Phage-Display Libraries

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 525))

Abstract

The particular interest in VH antibody fragments stems from the fact that they can rival their “naturally occurring” single-domain antibody (sdAb) counterparts (camelid VHHs and shark VNARs) with regard to such desirable characteristics as stability, solubility, expression, and ability to penetrate cryptic epitopes and outperform them in terms of less immunogenicity, a much valued property in human immunotherapy applications. However, human VHs are typically prone to aggregation. Various approaches for developing non-aggregating human VHs with binding specificities have relied on a combination of recombinant DNA technology and phage-display technology. VH gene libraries are constructed synthetically by randomizing the CDRs of a single VH scaffold fused to a gene encoding a phage coat protein. Recombinant phage expressing the resulting VH libraries in fusion with the pIII protein is propagated in Escherichia coli. Monoclonal phage displaying VHs with specificities for target antigens are isolated from the libraries by a process called panning. The exertion of stability pressure in addition to binding pressure during panning ensures that the isolated VH binders are also non-aggregating. The genes encoding the desired VHs selected from the libraries are packaged within the phage particles, linking genotype and phenotype, hence making possible the identification of the selected VHs through identifying its physically linked genotype. Here, we describe the application of recombinant DNA and phage-display technologies for the construction of a phage-displayed human VH library, the panning of the library against a protein, and the expression, purification, and characterization of non-aggregating VHs isolated by panning.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

Notes

  1. 1.

    This is National Research Council of Canada Publication 00000.

References

  1. Ward, E. S., Gussow, D., Griffiths, A. D., Jones, P. T., and Winter, G. (1989) Binding activities of a repertoire of single immunoglobulin variable domains secreted from Escherichia coli. Nature 341, 544–546.

    Article  PubMed  CAS  Google Scholar 

  2. Arbabi-Ghahroudi, M., Desmyter, A., Wyns, L., Hamers, R., and Muyldermans, S. (1997) Selection and identification of single domain antibody fragments from camel heavy-chain antibodies. FEBS Lett. 414, 521–526.

    Article  PubMed  CAS  Google Scholar 

  3. Hamers-Casterman C., Atarhouch, T., Muyldermans, S., Robinson, G., Hamers, C., Songa, E. B., Bendahman, N., and Hamers, R. (1993) Naturally occurring antibodies devoid of light chains. Nature 363, 446–448.

    Article  PubMed  CAS  Google Scholar 

  4. Dooley, H. and Flajnik, M. F. (2006) Antibody repertoire development in cartilaginous fish. Dev. Comp. Immunol. 30, 43–56.

    Article  PubMed  CAS  Google Scholar 

  5. Greenberg, A. S., Avila, D., Hughes, M., Hughes, A., McKinney, E. C., and Flajnik, M. F. (1995) A new antigen receptor gene family that undergoes rearrangement and extensive somatic diversification in sharks. Nature 374, 168–173.

    Article  PubMed  CAS  Google Scholar 

  6. Roux, K. H., Greenberg, A. S., Greene, L., Strelets, L., Avila, D., McKinney, E. C., and Flajnik, M. F. (1998) Structural analysis of the nurse shark (new) antigen receptor (NAR): molecular convergence of NAR and unusual mammalian immunoglobulins. Proc. Natl. Acad. Sci. USA 95, 11804–11809.

    Google Scholar 

  7. Dooley, H., Flajnik, M. F., and Porter, A. J. (2003) Selection and characterization of naturally occurring single-domain (IgNAR) antibody fragments from immunized sharks by phage display. Mol. Immunol. 40, 25–33.

    Article  PubMed  CAS  Google Scholar 

  8. Liu, J. L., Anderson, G. P., Delehanty, J. B., Baumann, R., Hayhurst, A., and Goldman, E. R. (2007) Selection of cholera toxin specific IgNAR single-domain antibodies from a naive shark library. Mol. Immunol. 44, 1775–1783.

    Article  PubMed  CAS  Google Scholar 

  9. Nuttall, S. D., Krishnan, U. V., Hattarki, M., De Gori, R., Irving, R. A., and Hudson, P. J. (2001) Isolation of the new antigen receptor from Wobbegong sharks, and use as a scaffold for the display of protein loop libraries. Mol. Immunol. 38, 313–326.

    Article  PubMed  CAS  Google Scholar 

  10. Nuttall, S. D., Krishnan, U. V., Doughty, L., Nathanielsz, A., Ally, N., Pike, R. N., Hudson, P. J., Kortt, A. A., and Irving, R. A. (2002) A naturally occurring NAR variable domain binds the Kgp protease from Porphyromonas gingivalis. FEBS Lett. 516, 80–86.

    Article  PubMed  CAS  Google Scholar 

  11. Revets, H., De Baetselier, P., and Muyldermans, S. (2005) Nanobodies as novel agents for cancer therapy. Expert Opin. Biol. Ther. 5, 111–124.

    Article  PubMed  CAS  Google Scholar 

  12. Davies, J. and Riechmann, L. (1994) ‘Camelising’ human antibody fragments: NMR studies on VH domains. FEBS Lett. 339, 285–290.

    Article  PubMed  CAS  Google Scholar 

  13. Davies, J. and Riechmann, L. (1995) Antibody VH domains as small recognition units. Biotechnology NY 13, 475–479.

    Article  CAS  Google Scholar 

  14. Tanha, J., Xu, P., Chen, Z. G., Ni, F., Kaplan, H., Narang, S. A., and MacKenzie, C. R. (2001) Optimal design features of camelized human single-domain antibody libraries. J. Biol. Chem. 276, 24774–24780.

    Article  PubMed  CAS  Google Scholar 

  15. Reiter, Y., Schuck, P., Boyd, L. F., and Plaksin, D. (1999) An antibody single-domain phage display library of a native heavy chain variable region: isolation of functional single-domain VH molecules with a unique interface. J. Mol. Biol. 290, 685–698.

    Article  PubMed  CAS  Google Scholar 

  16. Tanha, J., Dubuc, G., Hirama, T., Narang, S. A., and MacKenzie, C. R. (2002) Selection by phage display of llama conventional VH fragments with heavy chain antibody VHH properties. J. Immunol. Methods 263, 97–109.

    Article  PubMed  CAS  Google Scholar 

  17. Vranken, W., Tolkatchev, D., Xu, P., Tanha, J., Chen, Z., Narang, S., and Ni, F. (2002) Solution structure of a llama single-domain antibody with hydrophobic residues typical of the VH/VL interface. Biochemistry 41, 8570–8579.

    Article  PubMed  CAS  Google Scholar 

  18. Christ, D., Famm, K., and Winter, G. (2007) Repertoires of aggregation-resistant human antibody domains. Protein Eng. Des. Sel. 20, 413–416.

    Article  PubMed  CAS  Google Scholar 

  19. De Bernardis, F., Liu, H., O'Mahony, R., La Valle, R., Bartollino, S., Sandini, S., Grant, S., Brewis, N., Tomlinson, I., Basset, R. C., Holton, J., Roitt, I. M., and Cassone, A. (2007) Human domain antibodies against virulence traits of Candida albicans inhibit fungus adherence to vaginal epithelium and protect against experimental vaginal candidiasis. J. Infect. Dis. 195, 149–157.

    Article  PubMed  Google Scholar 

  20. Jespers, L., Schon, O., James, L. C., Veprintsev, D., and Winter, G. (2004) Crystal structure of HEL4, a soluble, refoldable human VH single domain with a germ-line scaffold. J. Mol. Biol. 337, 893–903.

    Article  PubMed  CAS  Google Scholar 

  21. Jespers, L., Schon, O., Famm, K., and Winter, G. (2004) Aggregation-resistant domain antibodies selected on phage by heat denaturation. Nat. Biotechnol. 22, 1161–1165.

    Article  PubMed  CAS  Google Scholar 

  22. To, R., Hirama, T., Arbabi-Ghahroudi, M., MacKenzie, R., Wang, P., Xu, P., Ni, F., and Tanha, J. (2005) Isolation of monomeric human VHs by a phage selection. J. Biol. Chem. 280, 41395–41403.

    Article  PubMed  CAS  Google Scholar 

  23. Colby, D. W., Garg, P., Holden, T., Chao, G., Webster, J. M., Messer, A., Ingram, V. M., and Wittrup, K. D. (2004) Development of a human light chain variable domain (VL) intracellular antibody specific for the amino terminus of huntingtin via yeast surface display. J. Mol. Biol. 342, 901–912.

    Article  PubMed  CAS  Google Scholar 

  24. Colby, D. W., Chu, Y., Cassady, J. P., Duennwald, M., Zazulak, H., Webster, J. M., Messer, A., Lindquist, S., Ingram, V. M., and Wittrup, K. D. (2004) Potent inhibition of huntingtin aggregation and cytotoxicity by a disulfide bond-free single-domain intracellular antibody. Proc. Natl. Acad. Sci. USA 101, 17616–17621.

    Google Scholar 

  25. Holt, L. J., Herring, C., Jespers, L. S., Woolven, B. P., and Tomlinson, I. M. (2003) Domain antibodies: proteins for therapy. Trends Biotechnol. 21, 484–490.

    Article  PubMed  CAS  Google Scholar 

  26. Paz, K., Brennan, L. A., Iacolina, M., Doody, J., Hadari, Y. R., and Zhu, Z. (2005) Human single-domain neutralizing intrabodies directed against Etk kinase: a novel approach to impair cellular transformation. Mol. Cancer Ther. 4, 1801–1809.

    Article  PubMed  CAS  Google Scholar 

  27. Kopsidas, G., Roberts, A. S., Coia, G., Streltsov, V. A., and Nuttall, S. D. (2006) In vitro improvement of a shark IgNAR antibody by Qβ replicase mutation and ribosome display mimics in vivo affinity maturation. Immunol. Lett. 107, 163–168.

    Article  PubMed  CAS  Google Scholar 

  28. Kopsidas, G., Carman, R. K., Stutt, E. L., Raicevic, A., Roberts, A. S., Siomos, M. A., Dobric, N., Pontes-Braz, L., and Coia, G. (2007) RNA mutagenesis yields highly diverse mRNA libraries for in vitro protein evolution. BMC. Biotechnol. 7, 18.

    Article  PubMed  Google Scholar 

  29. Nguyen, V. K., Desmyter, A., and Muyldermans, S. (2001) Functional heavy-chain antibodies in Camelidae. Adv. Immunol. 79, 261–296.

    Article  PubMed  CAS  Google Scholar 

  30. Tanaka, T., Lobato, M. N., and Rabbitts, T. H. (2003) Single domain intracellular antibodies: a minimal fragment for direct in vivo selection of antigen-specific intrabodies. J. Mol. Biol. 331, 1109–1120.

    Article  PubMed  CAS  Google Scholar 

  31. Arbabi-Ghahroudi, M., Tanha, J., and MacKenzie, R. (2005) Prokaryotic expression of antibodies. Cancer Metastasis Rev. 24, 501–519.

    Article  PubMed  Google Scholar 

  32. Constantine, K. L., Goldfarb, V., Wittekind, M., Anthony, J., Ng, S. C., and Mueller, L. (1992) Sequential 1H and 15N NMR assignments and secondary structure of a recombinant anti-digoxin antibody VL domain. Biochemistry 31, 5033–5043.

    Article  PubMed  CAS  Google Scholar 

  33. Constantine, K. L., Goldfarb, V., Wittekind, M., Friedrichs, M. S., Anthony, J., Ng, S. C., and Mueller, L. (1993) Aliphatic 1H and 13C resonance assignments for the 26-10 antibody VL domain derived from heteronuclear multidimensional NMR spectroscopy. J. Biomol. NMR 3, 41–54.

    Article  PubMed  CAS  Google Scholar 

  34. Goldman, E. R., Anderson, G. P., Liu, J. L., Delehanty, J. B., Sherwood, L. J., Osborn, L. E., Cummins, L. B., and Hayhurst, A. (2006) Facile generation of heat-stable antiviral and antitoxin single domain antibodies from a semisynthetic llama library. Anal. Chem. 78, 8245–8255.

    Article  PubMed  CAS  Google Scholar 

  35. Harmsen, M. M. and de Haard, H. J. (2007) Properties, production, and applications of camelid single-domain antibody fragments. Appl. Microbiol. Biotechnol. 77, 13–22.

    Article  PubMed  CAS  Google Scholar 

  36. Cwirla, S. E., Peters, E. A., Barrett, R. W., and Dower, W. J. (1990) Peptides on phage: a vast library of peptides for identifying ligands. Proc. Natl. Acad. Sci. USA 87, 6378–6382.

    Google Scholar 

  37. Scott, J. K. and Smith, G. P. (1990) Searching for peptide ligands with an epitope library. Science 249, 386–390.

    Article  PubMed  CAS  Google Scholar 

  38. Smith, G. P. (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228, 1315–1317.

    Article  PubMed  CAS  Google Scholar 

  39. Barbas, C. F., III, Kang, A. S., Lerner, R. A., and Benkovic, S. J. (1991) Assembly of combinatorial antibody libraries on phage surfaces: the gene III site. Proc. Natl. Acad. Sci. USA 88, 7978–7982.

    Google Scholar 

  40. Bradbury, A. and Cattaneo, A. (1995) The use of phage display in neurobiology. Trends Neurosci. 18, 243–249.

    PubMed  CAS  Google Scholar 

  41. Bradbury, A. (2003). scFvs and beyond. Drug Discov. Today 8, 737–739.

    Article  PubMed  Google Scholar 

  42. Breitling, F., Dubel, S., Seehaus, T., Klewinghaus, I., and Little, M. (1991) A surface expression vector for antibody screening. Gene 104, 147–153.

    Article  PubMed  CAS  Google Scholar 

  43. Clackson, T., Hoogenboom, H. R., Griffiths, A. D., and Winter, G. (1991) Making antibody fragments using phage display libraries. Nature 352, 624–628.

    Article  PubMed  CAS  Google Scholar 

  44. Davies, J. and Riechmann, L. (1996) Single antibody domains as small recognition units: design and in vitro antigen selection of camelized, human VH domains with improved protein stability. Protein Eng. 9, 531–537.

    Article  PubMed  CAS  Google Scholar 

  45. Hoogenboom, H. R., Griffiths, A. D., Johnson, K. S., Chiswell, D. J., Hudson, P., and Winter, G. (1991) Multi-subunit proteins on the surface of filamentous phage: methodologies for displaying antibody (Fab) heavy and light chains. Nucleic Acids Res. 19, 4133–4137.

    Article  PubMed  CAS  Google Scholar 

  46. Hoogenboom, H. R., de Bruine, A. P., Hufton, S. E., Hoet, R. M., Arends, J. W., and Roovers, R. C. (1998) Antibody phage display technology and its applications. Immunotechnology 4, 1–20.

    Article  PubMed  CAS  Google Scholar 

  47. Lowman, H. B. (1997) Bacteriophage display and discovery of peptide leads for drug development. Annu. Rev. Biophys. Biomol. Struct. 26, 401–424.

    Article  PubMed  CAS  Google Scholar 

  48. Marks, J. D., Hoogenboom, H. R., Bonnert, T. P., McCafferty, J., Griffiths, A. D., and Winter, G. (1991) By-passing immunization. Human antibodies from V-gene libraries displayed on phage. J. Mol. Biol. 222, 581–597.

    Article  PubMed  CAS  Google Scholar 

  49. McCafferty, J., Griffiths, A. D., Winter, G., and Chiswell, D. J. (1990) Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348, 552–554.

    Article  PubMed  CAS  Google Scholar 

  50. Marks, J. D. and Bradbury, A. (2004) Selection of human antibodies from phage display libraries. Methods Mol. Biol. 248, 161–176.

    PubMed  CAS  Google Scholar 

  51. Sblattero, D. and Bradbury, A. (2000) Exploiting recombination in single bacteria to make large phage antibody libraries. Nat. Biotechnol. 18, 75–80.

    Article  PubMed  CAS  Google Scholar 

  52. Winter, G., Griffiths, A. D., Hawkins, R. E., and Hoogenboom, H. R. (1994) Making antibodies by phage display technology. Annu. Rev. Immunol. 12, 433–455.

    Article  PubMed  CAS  Google Scholar 

  53. Griffiths, A. D., Williams, S. C., Hartley, O., Tomlinson, I. M., Waterhouse, P., Crosby, W. L., Kontermann, R. E., Jones, P. T., Low, N. M., Allison, T. J., et al. (1994) Isolation of high affinity human antibodies directly from large synthetic repertoires. EMBO J. 13, 3245–3260.

    PubMed  CAS  Google Scholar 

  54. Sidhu, S. S., Li, B., Chen, Y., Fellouse, F. A., Eigenbrot, C., and Fuh, G. (2004) Phage-displayed antibody libraries of synthetic heavy chain complementarity determining regions. J. Mol. Biol. 338, 299–310.

    Article  PubMed  CAS  Google Scholar 

  55. Baek, H., Suk, K. H., Kim, Y. H., and Cha, S. (2002) An improved helper phage system for efficient isolation of specific antibody molecules in phage display. Nucleic Acids Res. 30, e18.

    Article  PubMed  Google Scholar 

  56. Chames, P. and Baty, D. (2000) Antibody engineering and its applications in tumor targeting and intracellular immunization. FEMS Microbiol. Lett. 189, 1–8.

    Article  PubMed  CAS  Google Scholar 

  57. Arap, M. A. (2005) Phage display technology: applications and innovations. Genet. Mol. Biol. 28, 1–9.

    Article  CAS  Google Scholar 

  58. Conrad, U. and Scheller, J. (2005) Considerations on antibody-phage display methodology. Comb. Chem. High Throughput Screen. 8, 117–126.

    Article  PubMed  CAS  Google Scholar 

  59. Duenas, M., Malmborg, A. C., Casalvilla, R., Ohlin, M., and Borrebaeck, C. A. (1996) Selection of phage displayed antibodies based on kinetic constants. Mol. Immunol. 33, 279–285.

    Article  PubMed  CAS  Google Scholar 

  60. Harrison, J. L., Williams, S. C., Winter, G., and Nissim, A. (1996) Screening of phage antibody libraries. Methods Enzymol. 267, 83–109.

    Article  PubMed  CAS  Google Scholar 

  61. Hawkins, R. E., Russell, S. J., and Winter, G. (1992) Selection of phage antibodies by binding affinity mimicking affinity maturation. J. Mol. Biol. 226, 889–896.

    Article  PubMed  CAS  Google Scholar 

  62. Mancini, N., Carletti, S., Perotti, M., Canducci, F., Mammarella, M., Sampaolo, M., and Burioni, R. (2004) Phage display for the production of human monoclonal antibodies against human pathogens. New Microbiol. 27, 315–328.

    PubMed  CAS  Google Scholar 

  63. Davies, J. and Riechmann, L. (1995) Antibody VH domains as small recognition units. Biotechnology NY 13, 475–479.

    Article  CAS  Google Scholar 

  64. Tanha, J., Nguyen, T. D., Ng, A., Ryan, S., Ni, F., and MacKenzie, R. (2006) Improving solubility and refolding efficiency of human VHs by a novel mutational approach. Protein Eng. Des. Sel. 19, 503–509.

    Article  PubMed  CAS  Google Scholar 

  65. Rondot, S., Koch, J., Breitling, F., and Dubel, S. (2001) A helper phage to improve single-chain antibody presentation in phage display. Nat. Biotechnol. 19, 75–78.

    Article  PubMed  CAS  Google Scholar 

  66. Sambrook, J., Fritsch, E. F., and Maniatis, T. (ed.) (1989) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  67. Desmyter, A., Transue, T. R., Arbabi-Ghahroudi, M., Thi, M. H., Poortmans, F., Hamers, R., Muyldermans, S., and Wyns, L. (1996) Crystal structure of a camel single-domain VH antibody fragment in complex with lysozyme. Nat. Struct. Biol. 3, 803–811.

    Article  PubMed  CAS  Google Scholar 

  68. Holliger, P. and Hudson, P. J. (2005) Engineered antibody fragments and the rise of single domains. Nat. Biotechnol. 23, 1126–1136.

    Article  PubMed  CAS  Google Scholar 

  69. Stanfield, R. L., Dooley, H., Flajnik, M. F., and Wilson, I. A. (2004) Crystal structure of a shark single-domain antibody V region in complex with lysozyme. Science 305, 1770–1773.

    Article  PubMed  CAS  Google Scholar 

  70. Stijlemans, B., Conrath, K., Cortez-Retamozo, V., Van Xong, H., Wyns, L., Senter, P., Revets, H., De Baetselier, P., Muyldermans, S., and Magez, S. (2004) Efficient targeting of conserved cryptic epitopes of infectious agents by single domain antibodies. African trypanosomes as paradigm. J. Biol. Chem. 279, 1256–1261.

    Article  PubMed  CAS  Google Scholar 

  71. Ho, S. N., Hunt, H. D., Horton, R. M., Pullen, J. K., and Pease, L. R. (1989) Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77, 51–59.

    Article  PubMed  CAS  Google Scholar 

  72. Tung, W. L. and Chow, K. C. (1995) A modified medium for efficient electrotransformation of E. coli. Trends Genet. 11, 128–129.

    Article  PubMed  CAS  Google Scholar 

  73. Tanha, J., Muruganandam, A., and Stanimirovic, D. (2003) Phage display technology for identifying specific antigens on brain endothelial cells. Methods Mol. Med. 89, 435–450.

    PubMed  CAS  Google Scholar 

  74. Anand, N. N., Dubuc, G., Phipps, J., MacKenzie, C. R., Sadowska, J., Young, N. M., Bundle, D. R., and Narang, S. A. (1991) Synthesis and expression in Escherichia coli of cistronic DNA encoding an antibody fragment specific for a Salmonella serotype B O-antigen. Gene 100, 39–44.

    Article  PubMed  CAS  Google Scholar 

  75. MacKenzie, C. R., Sharma, V., Brummell, D., Bilous, D., Dubuc, G., Sadowska, J., Young, N. M., Bundle, D. R., and Narang, S. A. (1994) Effect of Cλ-Cκ domain switching on Fab activity and yield in Escherichia coli: synthesis and expression of genes encoding two anti-carbohydrate Fabs. Biotechnology NY 12, 390–395.

    Article  CAS  Google Scholar 

  76. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.

    Article  PubMed  CAS  Google Scholar 

  77. Pace, C. N., Vajdos, F., Fee, L., Grimsley, G., and Gray, T. (1995) How to measure and predict the molar absorption coefficient of a protein. Protein Sci. 4, 2411–2423.

    Article  PubMed  CAS  Google Scholar 

  78. Ewert, S., Cambillau, C., Conrath, K., and Plűckthun, A. (2002) Biophysical properties of camelid VHH domains compared to those of human VH3 domains. Biochemistry 41, 3628–3636.

    Article  PubMed  CAS  Google Scholar 

  79. Ewert, S., Huber, T., Honegger, A., and Plűckthun, A. (2003) Biophysical properties of human antibody variable domains. J. Mol. Biol. 325, 531–553.

    Article  PubMed  CAS  Google Scholar 

  80. Zhang, J., Tanha, J., Hirama, T., Khieu, N. H., To, R., Tong-Sevinc, H., Stone, E., Brisson, J. R., and MacKenzie, C. R. (2004) Pentamerization of single-domain antibodies from phage libraries: A novel strategy for the rapid generation of high-avidity antibody reagents. J. Mol. Biol. 335, 49–56.

    Article  PubMed  CAS  Google Scholar 

  81. Christ, D., Famm, K., and Winter, G. (2006) Tapping diversity lost in transformations – in vitro amplification of ligation reactions. Nucleic Acids Res. 34, e108.

    Article  PubMed  Google Scholar 

  82. Kabat, E. A., Wu, T. T., Perry, H. M., Gottesman, K. S. and Foeller, C. (ed.) (1991). Sequences of Proteins of Immunological Interest. US Department of Health and Human Services, US Public Health Service, Bethesda, MD.

    Google Scholar 

  83. Stone, E., Hirama, T., Tanha, J., Tong-Sevinc, H., Li, S., MacKenzie, C. R., and Zhang, J. (2007). The assembly of single domain antibodies into bispecific decavalent molecules. J. Immunol. Methods 318, 88–94.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The assistance of Rebecca To, Nathalie Gaudette, and Hong Tong-Sevinc with library construction, panning, protein expression, and purification is gratefully acknowledged. We thank Shakeeba Waseh for performing size-exclusion chromatography experiments. Requests for pMED1 vector should be addressed to Mehdi Arbabi-Ghahroudi.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Arbabi-Ghahroudi, M., MacKenzie, R., Tanha, J. (2009). Selection of Non-aggregating VH Binders from Synthetic VH Phage-Display Libraries. In: Dimitrov, A. (eds) Therapeutic Antibodies. Methods in Molecular Biology™, vol 525. Humana Press. https://doi.org/10.1007/978-1-59745-554-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-554-1_10

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-92-3

  • Online ISBN: 978-1-59745-554-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics