Advertisement

Pyrosequencing of Toll-Like Receptor Polymorphisms of Functional Relevance

  • Parviz Ahmad-Nejad
Part of the METHODS IN MOLECULAR BIOLOGY™ book series (MIMB, volume 496)

Abstract

Inflammation is becoming increasingly recognized and discussed as an important pathobiochemical origin in many disease entities such as atherosclerosis, cancer, or infections and genetically determined susceptibility to danger signals may influence the development of inflammatory diseases. Members of the ‘toll-like receptor’ (TLR) family are pivotal molecules in the activation of the innate immune system and specifically recognize structurally conserved pathogen-associated molecular patterns. Since their discovery a growing number of single nucleotide polymorphisms (SNPs) have been identified, functionally characterized and in part linked to multiple diseases. Here we report several protocols for PyrosequencingˆledR approaches to genotype functionally relevant SNPs in TLR-genes and further molecules of the innate immune system.

Key Words

toll-like receptor lipopolysaccharide pathogen-associated molecular pattern PyrosequencingˆledR single nucleotide polymorphism genotyping 

References

  1. 1.
    Takeda, K., Kaisho, T., Akira, S. (2003) Toll-like receptors. Annu Rev Immunol 21, 335–376.CrossRefPubMedGoogle Scholar
  2. 2.
    Poltorak, A., He, X., Smirnova, I., Liu, M. Y., Huffel, C. V., Du, X., Birdwell, D., Alejos, E., Silva, M., Galanos, C. et al. (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088.CrossRefPubMedGoogle Scholar
  3. 3.
    Aliprantis, A. O., Weiss, D. S., Zychlinsky, A. (2001) Toll-like receptor-2 transduces signals for NF-kappa B activation, apoptosis and reactive oxygen species production. J Endotoxin Res 7, 287–291.PubMedGoogle Scholar
  4. 4.
    Vabulas, R. M., Ahmad-Nejad, P., da Costa, C., Miethke, T., Kirschning, C. J., Hacker, H., Wagner, H. (2001) Endocytosed HSP60s use toll-like receptor 2 (TLR2) and TLR4 to activate the toll/interleukin-1 receptor signaling pathway in innate immune cells. J Biol Chem 276, 31332–31339.CrossRefPubMedGoogle Scholar
  5. 5.
    Vabulas, R. M., Ahmad-Nejad, P., Ghose, S., Kirschning, C. J., Issels, R. D., Wagner, H. (2002) HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway. J Biol Chem 277, 15107–15112.CrossRefPubMedGoogle Scholar
  6. 6.
    Vabulas, R. M., Braedel, S., Hilf, N., Singh-Jasuja, H., Herter, S., Ahmad-Nejad, P., Kirschning, C. J., Da Costa, C., Rammensee, H. G., Wagner, H. et al. (2002) The endoplasmic reticulum-resident heat shock protein Gp96 activates dendritic cells via the Toll-like receptor 2/4 pathway. J Biol Chem 277, 20847–20853.Google Scholar
  7. 7.
    Underhill, D. M., Ozinsky, A., Hajjar, A. M., Stevens, A., Wilson, C. B., Bassetti, M., Aderem, A. (1999) The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature 401, 811–815.CrossRefPubMedGoogle Scholar
  8. 8.
    Hemmi, H., Takeuchi, O., Kawai, T., Kaisho, T., Sato, S., Sanjo, H., Matsumoto, M., Hoshino, K., Wagner, H., Takeda, K. et al. (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408, 740–745.CrossRefPubMedGoogle Scholar
  9. 9.
    Hayashi, F., Smith, K. D., Ozinsky, A., Hawn, T. R., Yi, E. C., Goodlett, D. R., Eng, J. K., Akira, S., Underhill, D. M., Aderem, A. (2001) The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410, 1099–1103.CrossRefPubMedGoogle Scholar
  10. 10.
    Jurk, M., Heil, F., Vollmer, J., Schetter, C., Krieg, A. M., Wagner, H., Lipford, G., Bauer, S. (2002) Human TLR7 or TLR8 independently confer responsiveness to the antiviral compound R-848. Nat Immunol 3, 499.CrossRefPubMedGoogle Scholar
  11. 11.
    Heil, F., Ahmad-Nejad, P., Hemmi, H., Hochrein, H., Ampenberger, F., Gellert, T., Dietrich, H., Lipford, G., Takeda, K., Akira, S. et al. (2003) The Toll-like receptor 7 (TLR7)-specific stimulus loxoribine uncovers a strong relationship within the TLR7, 8 and 9 subfamily. Eur J Immunol 33, 2987–2997.CrossRefPubMedGoogle Scholar
  12. 12.
    Hemmi, H., Kaisho, T., Takeuchi, O., Sato, S., Sanjo, H., Hoshino, K., Horiuchi, T., Tomizawa, H., Takeda, K., Akira, S. (2002) Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol 3, 196–200.CrossRefPubMedGoogle Scholar
  13. 13.
    Riva, A., Kohane, I. S. (2002) SNPper: retrieval and analysis of human SNPs. Bioinformatics 18, 1681–1685.CrossRefPubMedGoogle Scholar
  14. 14.
    Hawn, T. R., Verbon, A., Lettinga, K. D., Zhao, L. P., Li, S. S., Laws, R. J., Skerrett, S. J., Beutler, B., Schroeder, L., Nachman, A. et al. (2003) A common dominant TLR5 stop codon polymorphism abolishes flagellin signaling and is associated with susceptibility to legionnaires’ disease. J Exp Med 198, 1563–1572.CrossRefPubMedGoogle Scholar
  15. 15.
    Lorenz, E., Mira, J. P., Cornish, K. L., Arbour, N. C., Schwartz, D. A. (2000) A novel polymorphism in the toll-like receptor 2 gene and its potential association with staphylococcal infection. Infect Immun 68, 6398–6401.CrossRefPubMedGoogle Scholar
  16. 16.
    Merx, S., Neumaier, M., Wagner, H., Kirschning, C. J., Ahmad-Nejad, P. (2007) Characterization and investigation of single nucleotide polymorphisms and a novel TLR2 mutation in the human TLR2 gene. Hum Mol Genet 16, 1225–1232.CrossRefPubMedGoogle Scholar
  17. 17.
    Merx, S., Zimmer, W., Neumaier, M., Ahmad-Nejad, P. (2006) Characterization and functional investigation of single nucleotide polymorphisms (SNPs) in the human TLR5 gene. Hum Mutat 27, 293.CrossRefPubMedGoogle Scholar
  18. 18.
    Fakhrai-Rad, H., Pourmand, N., Ronaghi, M. (2002) Pyrosequencing: an accurate detection platform for single nucleotide polymorphisms. Hum Mutat 19, 479–485.CrossRefPubMedGoogle Scholar
  19. 19.
    Ahmadian, A., Ehn, M., Hober, S. (2006) Pyrosequencing: history, biochemistry and future. Clin Chim Acta 363, 83–94.CrossRefPubMedGoogle Scholar
  20. 20.
    Langaee, T., Ronaghi, M. (2005) Genetic variation analyses by Pyrosequencing. Mutat Res 573, 96–102.PubMedGoogle Scholar
  21. 21.
    Neumaier, M., Braun, A., Wagener, C. (1998) Fundamentals of quality assessment of molecular amplification methods in clinical diagnostics. International Federation of Clinical Chemistry Scientific Division Committee on Molecular Biology Techniques. Clin Chem 44, 12–26.PubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Parviz Ahmad-Nejad
    • 1
  1. 1.Institute for Clinical ChemistryUniversity of Heidelberg, Medical Faculty MannheimGermany

Personalised recommendations