Single Base Extension in Multiplex Blood Group Genotyping

  • Gregory A. Denomme
Part of the METHODS IN MOLECULAR BIOLOGY™ book series (MIMB, volume 496)


Transfusion recipients who become alloimmunized to blood group antigens require antigen-negative blood to limit adverse transfusion reactions. An alternative strategy to phenotyping blood is to assay genomic DNA for the associated single nucleotide polymorphisms (SNPs). A multiplex PCR coupled with a single base oligonucleotide extension assay using genomic DNA can identify SNPs related to D, C/c, E/e, S/s, K/k, Kpa/b, Fya/b, Fy0 (–33 promoter silencing polymorphism), Jka/b, Dia/b, and HPA-1a/b. Using this technology, individual SNP call rates vary from 98 to 100%. The platform has the capacity to genotype thousands of samples per day. The suite of SNPs provides rapid data for both blood donors and transfusion recipients and is poised to change whose blood is provided for potential transfusion recipients. The potential to dramatically lower the incidence of alloimmunization and to avoid serious hemolytic complications of transfusions can be realized with the implementation of this technology.

Key Words

Blood group genotyping multiplex PCR single base extension SNP analysis 


  1. 1.
    Daniels, G., Flegel, W. A., Fletcher, A., Garratty, G., Levene, C., Lomas-Francis, C., Moulds, J. M., Moulds, J. J., Olsson, M. L., Overbeeke, M. A., Poole, J., Reid, M. E., Rouger, P., van der Schoot, C. E., Scott, M., Sistonen, P., Smart, E., Storry, J. R., Tani, Y., Yu, L. C., Wendel, S., Westhoff, C. M., Zelinski, T. (2007) International society of blood transfusion committee on terminology for red cell surface antigens: cape town report. Vox Sang 92, 250–253.Google Scholar
  2. 2.
    Coles, S. M., Klein, H. G., Holland, P. V. (1981) Alloimmunization in two multitransfused patient populations. Transfusion 21, 462–466.CrossRefPubMedGoogle Scholar
  3. 3.
    Fluit, C. R., Kunst, V. A., Drenthe-Schonk A. M (1990) Incidence of red cell antibodies after multiple blood transfusion. Transfusion 30, 532–535.CrossRefPubMedGoogle Scholar
  4. 4.
    Stroncek, D. (2002) Neutrophil alloantigens. Transfus Med Rev 16, 67–75.Google Scholar
  5. 5.
    Logdberg, L., Reid, M. E., Lamont, R. E., Zelinski, T. (2005) Human blood group genes 2004: chromosomal locations and cloning strategies. Transfus Med Rev 19, 45–57.CrossRefPubMedGoogle Scholar
  6. 6.
    Denomme, G. A., Lomas-Francis, C., Reid, M. E., Storry, J. R. (2004) Blood group molecular genotyping and its applications, in (Stowell, C., Dzik, S., eds.), Emerging Diagnostic and Therapeutic Technologies in Transfusion Medicine. American Association of Blood Banks, Bethesda.Google Scholar
  7. 7.
    Kanter, M. H., Hodge, S. E. (1990) The probability of obtaining compatible blood from related directed donors. Arch Pathol Lab Med 114, 1013–1016.PubMedGoogle Scholar
  8. 8.
    Bell, P. A., Chaturvedi, S., Gelfand, C. A., Huang, C. Y., Kochersperger, M., Kopla, R., Modica, F., Pohl, M., Varde, S., Zhao, R., Zhao, X., Boyce-Jacino, M. T., Yassen, A. (2002) SNPstream UHT: ultra-high throughput SNP genotyping for pharmacogenomics and drug discovery. Biotechniques Suppl, 70–77.Google Scholar
  9. 9.
    Denomme, G. A., Rios, M., Reid, M. E. Molecular Protocols in Transfusion Medicine. Academic Press, New York.Google Scholar
  10. 10.
    Denomme, G. A., van Oene, M. (2005) High-throughput multiplex single-nucleotide polymorphism analysis for red cell and platelet antigen genotypes. Transfusion 45, 660–666.CrossRefPubMedGoogle Scholar
  11. 11.
    Montpetit, A., Phillips, M. S., Mongrain, I., Lemieux, R., St-Louis, M. (2006) High-throughput molecular profiling of blood donors for minor red blood cell and platelet antigens. Transfusion 46, 841–848.CrossRefPubMedGoogle Scholar
  12. 12.
    Tax, M. G., van der Schoot, C. E., van Doorn, R., Douglas-Berger, L., van Rhenen, D. J., Maaskant-vanWijk, P. A. (2002) RHC and RHc genotyping in different ethnic groups. Transfusion 42, 634–644.CrossRefPubMedGoogle Scholar
  13. 13.
    Aygun, B., Padmanabhan, S., Paley, C., Chandrasekaran, V. (2002) Clinical significance of RBC alloantibodies and autoantibodies in sickle cell patients who received transfusions. Transfusion 42, 37–43.CrossRefPubMedGoogle Scholar
  14. 14.
    Schonewille, H., Haak, H. L., van Zijl, A. M. (1999) Alloimmunization after blood transfusion in patients with hematologic and oncologic diseases. Transfusion 39, 763–771.CrossRefPubMedGoogle Scholar
  15. 15.
    Sirchia, G., Zanella, A., Parravicini, A., Morelati, F., Rebulla, P., Masera, G. (1985) Red cell alloantibodies in thalassemia major. Results of an Italian cooperative study. Transfusion 25, 110–112.CrossRefPubMedGoogle Scholar
  16. 16.
    Seltsam, A., Wagner, F. F., Salama, A., Flegel, W. A. (2003) Antibodies to high-frequency antigens may decrease the quality of transfusion support: an observational study. Transfusion 43, 1563–1566.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Gregory A. Denomme
    • 1
  1. 1.Research&Development Canadian Blood ServiceTorontoCanada

Personalised recommendations