Skip to main content

Micromolding for the Fabrication of Biological Microarrays

  • Protocol
  • First Online:
Biological Microarrays

Abstract

The PRINT® (pattern replication in non-wetting templates) process has been developed as a simple, gentle way to pattern films or generate discrete particles in arrays out of either pure biological materials or biomolecules encapsulated within polymeric materials. Patterned films and particle arrays can be fabricated in a wide array of sizes and shapes using Fluorocur® (a UV-curable perfluoropolyether polymer) from the nanometer to micron scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Voldman, J.; Gray, M. L.; Schmidt, M. A. Microfabrication in Biology and medicine. Annu. Rev. Biomed. Eng. 1999, 1, 401–425.

    Article  CAS  Google Scholar 

  2. Truskett, V. N.; Watts, M. P. C. Trends in imprint lithography for biological applications. Trends Biotechnol. 2006, 24(7), 312–317.

    Article  CAS  Google Scholar 

  3. Kane, R. S.; Takayama, S.; Ostuni, E.; Ingber, D. E.; Whitesides, G. M. Patterning proteins and cells using soft lithography. Biomaterials 1999, 20, 2363–2376.

    Article  CAS  Google Scholar 

  4. Kelly, J. Y.; DeSimone, J. M. Shape-specific, monodisperse nano-molding of protein particles. J. Am. Chem. Soc. 2008, 130(16), 5438–5439.

    Article  CAS  Google Scholar 

  5. Torres, C. M. S.; Zankovych, S.; Seekamp, J.; Kam, A. P.; Cedeno, C. C.; Hoffman, T.; Ahopelto, J.; Reuther, F.; Pfeiffer, K.; Bleidiessel, G.; Gruetzner, G.; Maximov, M. V.; Heidari, B. Nanoimprint lithography: an alternative nanofabrication approach. Mater. Sci. Eng. C. 2003, 23, 23–31.

    Article  Google Scholar 

  6. Glangchai, L. C.; Caldorera-Moore, M.; Shi, L.; Roy, K. Nanoimprint lithography based fabrication of shape-specific enzymatically-triggered smart nanoparticles. J. Control Release 2008, 125, 263–272.

    Article  CAS  Google Scholar 

  7. Rolland, J. P.; Hagberg, E. C.; Denison, G. M.; Carter, K. R.; DeSimone, J. M. High resolution soft lithography: Enabling materials for nanotechnologies. Angew Chem. Int. Ed. Engl. 2004, 43(43), 5796–5799.

    Article  CAS  Google Scholar 

  8. Rolland, J. P.; Van Dam, R. M.; Schorzman, D. A.; Quake, S. R.; DeSimone, J. M. Solvent-resistant photocurable “liquid teflon” for microfluidic device fabrication. J. Am. Chem. Soc. 2004, 126, 2322–2323.

    Article  CAS  Google Scholar 

  9. Rolland, J. P.; Maynor, B. W.; Euliss, L. E.; Exner, A. E.; Denison, G. M.; DeSimone, J. M. Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials. J. Am. Chem. Soc. 2005, 127(28), 10096–10100.

    Article  CAS  Google Scholar 

  10. Maynor, B. W.; Larue, I.; Hu, Z.; Rolland, J. P.; Pandya, A.; Fu, Q; Liu, J.; Spontak, R. J.; Sheiko, S. S.; Samulski, R. J.; Samulski, E. T.; DeSimone, J. M. Supramolecular nanomimetics: Replication of micelles, viruses, and other naturally occurring nanoscale objects. Small 2007, 3(5), 845–849.

    Article  CAS  Google Scholar 

  11. Gratton, S. E. A., Pohlhaus, P. D.; Lee, J.; Guo, J.; Cho, M. J.; DeSimone, J. M. Nanofabricated particles for engineered drug therapies: A preliminary biodistribution study of PRINT™ nanoparticles. J. Control Release 2007, 121(1–2), 10–18.

    Article  CAS  Google Scholar 

  12. http://www.chem.unc.edu/people/faculty/desimone/group/research_print.htm.

  13. Gratton, S. E. A.; Ropp, P. A.; Pohlhaus, P. D.; Luft, J. C.; Madden, V. J.; Napier, M. E.; DeSimone, J. M. The effect of particle design on cellular internalization pathways. Proc. Nat. Acad. Sci. USA 2008, 105(33), 11613–11618.

    Article  CAS  Google Scholar 

  14. Euliss, L. E.; DuPont, J. A.; Gratton, S. E. A.; DeSimone, J. M. Imparting size, shape, and composition control of materials for nanomedicine. Chem. Soc. Rev., 2006, 35, 1095–1104.

    Article  CAS  Google Scholar 

  15. Herlihy, K. P.; Nunes, J.; DeSimone, J. M. Electrically driven alignment and crystallization of unique anisotropic polymer particles. Langmuir 2008, 24, 8421–8426.

    Article  CAS  Google Scholar 

  16. Petros, R. A.; Ropp, P. A.; DeSimone, J. M. Reductively labile PRINT particles for the delivery of doxorubicin to HeLa cells. J. Am. Chem. Soc. 2008, 130(15), 5008–5009.

    Article  CAS  Google Scholar 

  17. PCT# WO2008\045486, Liquidia Technolo-gies, Inc. “Nanoparticle Compositions for the Controlled Delivery of Nucleic Acids.”

    Google Scholar 

  18. International Patent application # WO 2008/127455, Liquidia, Technologies, Inc. “Nanoarrays and methods and materials for fabricating same.”

    Google Scholar 

  19. Li, Y.; Armes, S. P. Synthesis and chemical degradation of branched vinyl polymers prepared via ATRP: use of a cleavable disulfide-based branching agent. Macromolecules 2005, 38, 8155–8162.

    Article  CAS  Google Scholar 

  20. Gratton, S. E. A., Williams S. S.; Napier, M.; Pohlhaus, P. D.; Zhou, Z.; Wiles, K. B.; Maynor, B. W.; Shen, C.; Olafsen, T.; Samulski, E. T.; Desimone, J. M. The Pursuit of a scalable nanofabrication platform for use in the material and life science applications. Acc. Chem. Res. 2008, 41(12), 1685–1695.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge outstanding scientific collaborations between the Carolina Center of Cancer Nanotech-nology Excellence, Liquidia Technologies, and the Chemistry Department at the University of North Carolina, Chapel Hill. Much of this work was carried out by a team of exceptional postdoctoral fellows and graduate students. This work was supported by NIH U54-CA-119343 (the Carolina Center of Cancer Nanotechnology Excellence), NIH F32-CA-123650 (Ruth L. Kirschstein National Research Service Award), PPG P01-GM059299-07 (Pharma­codynamics of Genes and Oligonucleotides), STC Program of the NSF (CHE-9876674), the William R. Kenan Professorship at the University of North Carolina at Chapel Hill, and through a supported research agreement with Liquidia Technologies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph M. DeSimone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Galloway, A.L. et al. (2011). Micromolding for the Fabrication of Biological Microarrays. In: Khademhosseini, A., Suh, KY., Zourob, M. (eds) Biological Microarrays. Methods in Molecular Biology, vol 671. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-551-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-551-0_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-934115-95-4

  • Online ISBN: 978-1-59745-551-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics