Skip to main content

Microcontact Printing

  • Protocol
  • First Online:
Biological Microarrays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 671))

Abstract

Microcontact printing (μCP) is a useful technique for transferring certain molecules onto surfaces with high spatial resolution using elastomeric stamps. The stamp for μCP is fabricated by replica molding from a master made by microlithography. After wetting with a type of material as an “ink,” the stamp comes into contact with the substrate. The ink is selectively transferred onto parts of the substrate wherever the stamp makes direct contact, to generate patterns and structures with designated features. Self-assembled monolayers (SAMs) and μCP are useful in many different fields, e.g., in the studies of protein adsorption, cell attachment, and in the construction of sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Kumar and G. M. Whitesides (1993) Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol “ink” followed by chemical etching. Appl. Phys. Lett. 63, 2002.

    Article  CAS  Google Scholar 

  2. H. W. Li, B. V. O. Muir, G. Fichet and W. T. S. Huck (2003) Nanocontact printing: a route to sub-50-nm-scale chemical and biological patterning. Langmuir 19, 1963.

    Article  CAS  Google Scholar 

  3. N. L. Abbott, J. P. Folkers, and G. M. Whitesides (1992) Manipulation of the wettability of surfaces on the 0.1- to 1-micrometer scale through micromachining and molecular self-assembly. Science 257, 1380.

    Article  CAS  Google Scholar 

  4. Y. Xia and G. M. Whitesides (1998) Soft lithography. Annu. Rev. Mater. Sci. 28, 153.

    Article  CAS  Google Scholar 

  5. G. P. Lopez, H. A. Biebuyck, R. Harter, A. Kumar, and G. M. Whitesides (1993) Fabrication and imaging of two-dimensional patterns of proteins adsorbed on self-assembled monolayers by scanning electron microscopy. J. Am. Chem. Soc. 115, 10774.

    Article  CAS  Google Scholar 

  6. M. Riepl, K. Enander, B. Liedberg, M. Schaeferling, M. Kruschina, and F. Ortigao (2002) Functionalized surfaces of mixed alkanethiols on gold as a platform for oligonucleotide microarrays. Langmuir 18, 7016.

    Article  CAS  Google Scholar 

  7. X. Jiang, D. A. Bruzewicz, A. P. Wong, M. Piel, and G. M. Whitesides (2005) Directing cell migration with asymmetric micropatterns. Proc. Natl. Acad. Sci. USA 102, 975.

    Article  CAS  Google Scholar 

  8. A. Bernard, J. P. Renault, B. Michel, H. R. Bosshard, and E. Delamarche (2000) Microcontact printing of proteins. Adv. Mater. 12, 1067.

    Article  CAS  Google Scholar 

  9. S. A. Lange, V. Benes, D. P. Kern, J. K. H. Horber, and A. Bernard (2004) Microcontact printing of DNA molecules. Anal. Chem. 76, 1641.

    Article  CAS  Google Scholar 

  10. A. Bernard, E. Delamarche, H. Schmid, B. Michel, H. R. Bosshard, and H. Biebuyck (1998) Printing patterns of proteins. Langmuir 14, 2225.

    Article  CAS  Google Scholar 

  11. D. Arrington, M. Curry, and S. C. Street (2002) Patterned thin films of polyamidoamine dendrimers formed using microcontact printing. Langmuir 18, 7788.

    Article  CAS  Google Scholar 

  12. J. S. Hovis and S. G. Boxer (2001) Patterning and composition arrays of supported lipid bilayers by microcontact printing. Langmuir 17, 3400.

    Article  CAS  Google Scholar 

  13. A. Bernard, D. Fitzli, P. Sonderegger, E. Delamarche, B. Michel, H. R. Bosshard, and H. Biebuyck (2001) Affinity capture of proteins from solution and their dissociation by contact printing. Nat. Biotechnol. 19, 866.

    Article  CAS  Google Scholar 

  14. X. Jiang (2008) Surface patterning for controlling cell-substrate interaction, in Micro and Nanoengineering of the Cell Microenvironment: Technologies and Applications (A. Khadem-hosseini, J. Borenstein, M. Toner, S. Takayama, eds), Artech House, Norwood, MA, pp.33–51.

    Google Scholar 

  15. S. A. Ruiz and C. S. Chen (2007) Microcontact printing: a tool to pattern. Soft Matter 3, 168–177.

    Article  CAS  Google Scholar 

  16. J. A. Rogers, Z. Bao, K. Baldwin, A. Dodabalapur, B. Crone, V. R. Raju, V. Kuck, H. Katz, K. Amundson, J. Ewing, and P. Drzaic (2001) Paper-like electronic displays: Large-area rubber stamped plastic sheets of electronics and microencapsulated electrophoretic inks. Proc. Natl. Acad. Sci. USA 98, 4835.

    Article  CAS  Google Scholar 

  17. X. Jiang, R. Ferrigno, M. Mrksich, and G. M. Whitesides (2003) Electrochemical desorption of self-assembled monolayers noninvasively releases patterned cells from geometrical confinements. J. Am. Chem. Soc.125, 2366.

    Article  CAS  Google Scholar 

  18. E. Delamarche, H. Schmid, H. A. Biebuyck, and B. Michel (1997) Stability of molded polydimethylsiloxane microstructures. Adv. Mater. 9, 741.

    Article  CAS  Google Scholar 

  19. J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105, 1103.

    Article  CAS  Google Scholar 

  20. R. B. A. Sharpe, D. Burdinski, J. Huskens, H. J. W. Zandvliet, D. N. Reinhoudt, and B. Poelsema (2004) Spreading of 16-mercaptohexadecanoic acid in microcontact printing. Langmuir 20, 8646.

    Article  CAS  Google Scholar 

  21. Y. N. Xia and G. M. Whitesides (1995) Use of controlled reactive spreading of liquid alkanethiol on the surface of gold to modify the size of features produced by microcontact printing. J. Am. Chem. Soc. 117, 3274.

    Article  CAS  Google Scholar 

  22. Y. Li, B. Yuan, H. Ji, D. Han, S. Chen, F. Tian, and X. Jiang (2007) A method for patterning multiple types of cells by using electrochemical desorption of self-assembled monolayers within microfluidic channels. Angew. Chem. Int. Ed. 46, 1094

    Article  CAS  Google Scholar 

  23. K. Sun, Z. Wang, and X. Jiang (2008) Modular microfluidics for gradient generation. Lab Chip 8, 1536.

    Article  CAS  Google Scholar 

  24. L. Libioulle, A. Bietsch, H. Schmid, B. Michel, and E. Delamarche. (1999) Contact-inking stamps for microcontact printing of alkanethiols on gold. Langmuir 15, 300.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ms. Wenwen Liu, Mr. Bo Yuan, Mr. Kang Sun, and Mr. Dingbin Liu for the technical assistance. We thank the Chinese Academy of Sciences, the NSFC, MOST, and the Human Frontier Science Program for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingyu Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Xie, Y., Jiang, X. (2011). Microcontact Printing. In: Khademhosseini, A., Suh, KY., Zourob, M. (eds) Biological Microarrays. Methods in Molecular Biology, vol 671. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-551-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-551-0_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-934115-95-4

  • Online ISBN: 978-1-59745-551-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics