Skip to main content

Green Fluorescent Protein as a Tracer in Chimeric Tissues

The Power of Vapor Fixation

  • Protocol
Reporter Genes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 411))

Abstract

Green fluorescent protein (GFP) and its variants, small, highly soluble proteins, are routinely used as reporters for patterns of gene expression and the origin of cells in transplantation experiments. When not linked as fusion proteins to other polypeptides, they distribute rapidly in the cytoplasm of a given cell, thus allowing real-time observations on living material. For histological analysis, previous bath fixation of whole organs or tissues seemed obligatory, because, during drop fixation of sections, GFP rapidly leaks from cells whose membrane has been damaged by freezing and/or sectioning. The fluorescence of GFP and its derivatives is retained upon fixation, but most enzyme and antigenic activities of interest will be lost in the whole sample as a consequence of form aldehyde (FA) fixation. We have therefore developed an alternative method to fix GFP in frozen tissue sections by FA vapor. This method prevents leakage and redistribution of GFP and allows any cytochemical method to be applied to unfixed adjacent serial sections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Prasher, D. C., Eckenrode, V. K., Ward, W. W., Prendergast, F. G., and Cormier, M. J. (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111, 229–233.

    Article  PubMed  CAS  Google Scholar 

  2. Cormack, B. P., Valdivia, R. H., and Falkow, S. (1996) FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173, 33–38.

    Article  PubMed  CAS  Google Scholar 

  3. Hadjantonakis, A. K. and Nagy, A. (2001) The color of mice: in the light of GFPvariant reporters. Histochem. Cell. Biol. 115, 49–58.

    PubMed  CAS  Google Scholar 

  4. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W., and Prasher, D. C. (1994) Green fluorescent protein as a marker for gene expression. Science 263, 802–805.

    Article  PubMed  CAS  Google Scholar 

  5. Amsterdam, A., Lin, S., Moss, L. G., and Hopkins, N. (1996) Requirements for green fluorescent protein detection in transgenic zebrafish embryos. Gene 173, 99–103.

    Article  PubMed  CAS  Google Scholar 

  6. Tannahill, D., Bray, S., and Harris, W. A. (1995) A Drosophila E(spl) gene is “neurogenic” in Xenopus: a green fluorescent protein study. Dev. Biol. 168, 694–697.

    Article  PubMed  CAS  Google Scholar 

  7. Okabe, M., Ikawa, M., Kominami, K., Nakanishi, T., and Nishimune, Y. (1997) ‘Green mice’ as a source of ubiquitous green cells. FEBS Lett. 407, 313–319.

    Article  PubMed  CAS  Google Scholar 

  8. Eberhard, D. and Jockusch, H. (2005) Patterns of myocardial histogenesis as revealed by mouse chimeras. Dev. Biol. 278, 336–346.

    Article  PubMed  CAS  Google Scholar 

  9. Eberhard, D. and Jockusch, H. (2004) Intermingling versus clonal coherence during skeletal muscle development: mosaicism in eGFP/nLacZ-labeled mouse chimeras. Dev. Dyn. 230, 69–78.

    Article  PubMed  CAS  Google Scholar 

  10. Jockusch, H., Voigt, S., and Eberhard, D. (2003) Localization of GFP in frozen sections from unfixed mouse tissues: immobilization of a highly soluble marker protein by formaldehyde vapor. J. Histochem. Cytochem. 51, 401–404.

    PubMed  CAS  Google Scholar 

  11. Nachlas, M. M., Tsou, K. C., DeSouza, E., Cheng, C. S., and Seligman, A. M. (1957) Cytochemical demonstration of succinic dehydrogenase by the use of a new p-nitrophenyl substituted ditetrazole. J. Histochem. Cytochem. 5, 420–436.

    PubMed  CAS  Google Scholar 

  12. Green, H. J., Reichmann, H., and Pette, D. (1982) A comparison of two ATPase based schemes for histochemical muscle fibre typing in various mammals. Histochemistry 76, 21–31.

    Article  PubMed  CAS  Google Scholar 

  13. Brooke, M. H. and Kaiser, K. K. (1970) Muscle fiber types: how many and what kind? Arch. Neurol. 23, 369–379.

    PubMed  CAS  Google Scholar 

  14. Füchtbauer, E. M., Rowlerson, A. M., Gotz, K., et al. (1991) Direct correlation of parvalbumin levels with myosin isoforms and succinate dehydrogenase activity on frozen sections of rodent muscle. J. Histochem. Cytochem. 39, 355–361.

    PubMed  Google Scholar 

  15. Falck, B., Hillarp, N., Thieme, G., and Torp, A. (1962) Fluorescence of catechol amines and related compounds condensed with formaldehyde. J. Histochem. Cytochem. 10, 348.

    CAS  Google Scholar 

  16. Jockusch, H. and Voigt, S. (2003) Migration of adult myogenic precursor cells as revealed by GFP/nLacZ labelling of mouse transplantation chimeras. J. Cell Sci. 116, 1611–1616.

    Article  PubMed  CAS  Google Scholar 

  17. Schimmelpfennig, C. H., Schulz, S., Arber, C., et al. (2005) Ex vivo expanded dendritic cells home to T-cell zones of lymphoid organs and survive in vivo after allogeneic bone marrow transplantation. Am. J. Pathol. 167, 1321–1331.

    PubMed  CAS  Google Scholar 

  18. Sekine, M., Taya, C., Shitara, H., et al. (2006) The cis-regulatory element Gsl5 is indispensable for proximal straight tubule cell-specific transcription of core 2 beta-1,6-N-acetylglucosaminyltransferase in the mouse kidney. J. Biol. Chem. 281, 1008–1015.

    Article  PubMed  CAS  Google Scholar 

  19. vanBeek-Harmsen, B. J., Bekedam, M. A., Feenstra, H. M., Visser, F. C., and van derLaarse, W. J. (2004) Determination of myoglobin concentration and oxidative capacity in cryostat sections of human and rat skeletal muscle fibres and rat cardiomyocytes. Histochem. Cell. Biol. 121, 335–342.

    Article  PubMed  Google Scholar 

  20. vanBeek-Harmsen, B. J. and van derLaarse, W. J. (2005) Immunohistochemical determination of cytosolic cytochrome C concentration in cardiomyocytes. J. Histochem. Cytochem. 53, 803–807.

    Article  PubMed  Google Scholar 

  21. Bader, D., Masaki, T., and Fischman, D. A. (1982) Immunochemical analysis of myosin heavy chain during avian myogenesis in vivo and in vitro. J. Cell Biol. 95, 763–770.

    Article  PubMed  CAS  Google Scholar 

  22. Bartsch, J. W., Jäckel, M., Perz, A., and Jockusch, H. (2000) Steroid RU 486 inducible myogenesis by 10T1/2 fibroblastic mouse cells. FEBS Lett. 467, 123–127.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Jockusch, H., Eberhard, D. (2007). Green Fluorescent Protein as a Tracer in Chimeric Tissues. In: Anson, D.S. (eds) Reporter Genes. Methods in Molecular Biology, vol 411. Humana Press. https://doi.org/10.1007/978-1-59745-549-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-549-7_11

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-739-6

  • Online ISBN: 978-1-59745-549-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics